Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant blue jet caught on film

14.03.2002


Flashes this big might explain the 300,000-volt difference between the ionosphere and the ground


A sprite is like a blue jet but travels the other way.
© Uni. Alaska Fairbanks


Blue jets connect Earth’s electric circuit.

Video images captured in Puerto Rico suggest that blue flashes of light, much like lightning, feed energy from thunderstorms up into the Earth’s ionosphere - a blanket of electrically charged air some 70 kilometres above the ground1.

Some researchers suspect that such phenomena may also fix nitrogen for plants to use and interact with the ozone layer2.



The images, taken in September 2001, show the largest blue jet ever to be caught on camera. "It really was a gigantic flash," says Victor Pasko of Pennsylvania State University, who led the observation team. "With the naked eye you could even see it rising," he recalls.

Blue jets are often associated with thunderstorms, but until now were thought to be relatively small. The Puerto Rican jet stretched from the top of a small thunderstorm to the lower edge of the ionosphere, filling an estimated 6,000 cubic kilometres of atmosphere.

Flashes this big might explain the 300,000-volt difference between the charge of the ionosphere and the ground. Physicists have long agreed that something must link the two regions to complete the global electrical circuit (GEC). Until the latest film, nothing had been seen that reached high enough from the cloud tops to do the job.

"We knew the currents were there, but there was no visual evidence" says Davis Sentman, the physicist at the University of Alaska in Fairbanks who discovered blue jets in 1994. The film "really advances the science in this field", he says.

That the sighting was associated with the kind of small, localized storm common worldwide, suggests that large blue jets could also be common. If so, they might influence atmospheric chemistry: their electrical energy could encourage gases to react with one another. "The effect may be there but we don’t know if it’s dramatically important," admits Pasko.

Sprites, elves, trolls and pixies

In the past decade, high-speed, light-sensitive cameras have allowed scientists to describe a menagerie of electrical phenomena, which bear names that would be more at home in a Tolkien novel than a physics textbook. Sprites, blue jets and associated flashes called elves, crawlers, trolls and pixies are all fleeting electrical discharges that accompany thunderstorms.

All these phenomena are hard to spot, as they last for less than a blink of an eye and are obscured from below by cloud. They can be glimpsed along storm fronts and from aeroplanes flying above the clouds.

Sprites, which might also help to maintain the GEC, work a bit like blue jets in reverse. They are pink, or sometimes red, and occur when current from just below the ionosphere moves downwards towards thunderstorms. As with jets, this current excites atoms along the way, causing them to emit light.

References

  1. Pasko, V. P., Stanley, M. A., Mathews, J. D., Inan, U. S. & Wood, T. G. Electrical discharge from a thundercloud top to the lower ionosphere. Nature, 416, 152 - 154, (2002).
  2. Mishin, E. Ozone layer perturbation by a single blue jet. Geophysical Research Letters, 24, 1919 - 1922, (1997).


TOM CLARKE | © Nature News Service

More articles from Earth Sciences:

nachricht Tiny satellites reveal water dynamics in thousands of northern lakes
15.02.2019 | Brown University

nachricht Artificial Intelligence to boost Earth system science
14.02.2019 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

Researchers find trigger that turns strep infections into flesh-eating disease

19.02.2019 | Health and Medicine

Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

19.02.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>