Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust could settle Himalaya debates

14.03.2002


Great loess: layers of ancient dust give clues to mountains’ birth.
© Nature


Deserts covered Central Asia as early as 22 million years ago

The great Asian deserts developed 22 million years ago at the latest, 14 million years earlier than had been thought. So concludes a new analysis of Chinese soils, filling in another piece of the puzzle of the Himalayas’ birth.

Today, huge deserts characterize the vast landmasses inside Asia, the largest continent on Earth. Here, cut off by the Himalayas from the humidity of the Indian Ocean and far from any other seas, the climate is extreme. Winters are ice-cold, summers blazing hot and moisture scarce.



But some time between 36 and 22 million years ago, rivers flowed through these desiccated wastelands. The Himalayas had just started pushing up into the skies. And colliding continents had only recently swallowed the ancient equatorial ocean of Tethys, which had separated Eurasia from the fragments of what was once Gondwanaland.

The transition between these very different climates happened at least 22 million years ago, estimate Zhentang Guo of the Chinese Academy of Sciences and co-workers1. At two mountain sites in China’s Qinan basin, just 160 km northeast of the Tibetan plateau, the researchers found 231 layers of ancient, brownish, wind-blown dust, called loess.

The loess was deposited from 22 to 6.2 million years ago between layers of red clay. Each layer contains about 65,000 years’ worth of deposits. Such large layers imply that extensive deserts existed nearby: the Asian interior.

"The deserts would have been relatively cold, like the Gobi today, as opposed to the Sahara," explains Bill Ruddiman of the University of Virginia, one of the team. Cold, dry, winter monsoon winds transported the desert dusts to their long-term resting place.

The Qinan basin’s stripy landscape was produced by a climate of dry winter monsoons punctuated by moist summer monsoons. The reddish clay layers were produced locally during more humid periods, when weaker winter monsoons meant that desert dust didn’t make it to the Loess plateau, the researchers believe.

"To block the moisture, there must have been some sort of a mountain range in place 22 million years ago", says Jay Quade, a desert geoscientist at the University of Arizona in Tucson. The existence of the central Asian deserts 22 million years ago offers an independent perspective on the uplift of the Himalayas, the details of which are still controversial.

Before now, little was known about the region’s climate that far back in time. Most of the studies on Chinese loess have centred on the Quaternary period, less than 1.6 million years ago. Previously, the oldest reliably dated loess finds were only about 6 million years old.

References

  1. Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159 - 163 , (2002).

HEIKE LANGENBERG | © Nature News Service

More articles from Earth Sciences:

nachricht Strong storms generating earthquake-like seismic activity
16.10.2019 | Florida State University

nachricht The shelf life of pyrite
14.10.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>