Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust could settle Himalaya debates

14.03.2002


Great loess: layers of ancient dust give clues to mountains’ birth.
© Nature


Deserts covered Central Asia as early as 22 million years ago

The great Asian deserts developed 22 million years ago at the latest, 14 million years earlier than had been thought. So concludes a new analysis of Chinese soils, filling in another piece of the puzzle of the Himalayas’ birth.

Today, huge deserts characterize the vast landmasses inside Asia, the largest continent on Earth. Here, cut off by the Himalayas from the humidity of the Indian Ocean and far from any other seas, the climate is extreme. Winters are ice-cold, summers blazing hot and moisture scarce.



But some time between 36 and 22 million years ago, rivers flowed through these desiccated wastelands. The Himalayas had just started pushing up into the skies. And colliding continents had only recently swallowed the ancient equatorial ocean of Tethys, which had separated Eurasia from the fragments of what was once Gondwanaland.

The transition between these very different climates happened at least 22 million years ago, estimate Zhentang Guo of the Chinese Academy of Sciences and co-workers1. At two mountain sites in China’s Qinan basin, just 160 km northeast of the Tibetan plateau, the researchers found 231 layers of ancient, brownish, wind-blown dust, called loess.

The loess was deposited from 22 to 6.2 million years ago between layers of red clay. Each layer contains about 65,000 years’ worth of deposits. Such large layers imply that extensive deserts existed nearby: the Asian interior.

"The deserts would have been relatively cold, like the Gobi today, as opposed to the Sahara," explains Bill Ruddiman of the University of Virginia, one of the team. Cold, dry, winter monsoon winds transported the desert dusts to their long-term resting place.

The Qinan basin’s stripy landscape was produced by a climate of dry winter monsoons punctuated by moist summer monsoons. The reddish clay layers were produced locally during more humid periods, when weaker winter monsoons meant that desert dust didn’t make it to the Loess plateau, the researchers believe.

"To block the moisture, there must have been some sort of a mountain range in place 22 million years ago", says Jay Quade, a desert geoscientist at the University of Arizona in Tucson. The existence of the central Asian deserts 22 million years ago offers an independent perspective on the uplift of the Himalayas, the details of which are still controversial.

Before now, little was known about the region’s climate that far back in time. Most of the studies on Chinese loess have centred on the Quaternary period, less than 1.6 million years ago. Previously, the oldest reliably dated loess finds were only about 6 million years old.

References

  1. Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159 - 163 , (2002).

HEIKE LANGENBERG | © Nature News Service

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>