Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Altered Atlantic winds may hamper hurricanes

19.04.2007
In response to global warming, an atmospheric effect called wind shear may strengthen in the tropical Atlantic during this century and inhibit hurricane development and intensification there. So say researchers who have recently peered into the region's potential climate future using a large set of state- of-the-art global climate models.

Increased vertical wind shear--a tearing action which can pull a storm apart and is caused by differences in wind speed or direction with altitude--historically has been associated with reduced hurricane activity and intensity. While other studies have linked global warming to greater hurricane intensity, this study is the first to identify changes in wind shear that could counteract that effect, the scientists say.

"Wind shear is one of the dominant controls to hurricane activity, and the models project substantial increases in the Atlantic," says oceanographer Gabriel A. Vecchi of the National Oceanic and Atmospheric Administration (NOAA) in Princeton, New Jersey.

Using 18 different models, he and Brian J. Soden of the University of Miami, Florida, assessed changes in environmental factors linked to hurricane formation and intensity. In particular, they investigated potential variation in vertical wind shear over the tropical Atlantic and its ties to the Pacific Walker circulation. That vast loop of winds influences climate across much of the globe and varies in concert with El Nino and La Nina oscillations. In the new work, the models mostly predict a slowing of the Pacific Walker circulation, leading to greater wind shear throughout much of the tropical Atlantic.

"The impact on hurricane activity of the projected shear change could be as large -- and in the opposite sense -- as that of the warming oceans," Vecchi says. In other regions, such as the western tropical Pacific, the study finds that global warming renders the environment more favorable for hurricanes.

Vecchi and Soden report their findings today in Geophysical Research Letters, a journal of the American Geophysical Union.

The simulations incorporated a mid-range emissions scenario from the Intergovernmental Panel on Climate Change Fourth Assessment -- the latest of those assessments. According to the emissions scenario, the concentration of atmospheric carbon dioxide stabilizes at 720 parts per million by the year 2100. The wind-shear study examines two 20-year periods during this century: 2001-2020 and 2081-2100.

Vecchi notes that projections of increased wind shear found in the study are confined to the tropical Atlantic and East Pacific.

Moreover, factors besides global warming also contribute to change in Atlantic wind shear. The new simulations, Vecchi adds, provide "one piece of the puzzle" of how increased wind shear may affect hurricane activity.

For animations and still images depicting wind shear's impact on a hurricane, please visit the NOAA web site at: http://gfdl.noaa.gov/~gav/ipcc_viz.html

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://gfdl.noaa.gov/~gav/ipcc_viz.html

More articles from Earth Sciences:

nachricht Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle
23.07.2018 | University of Kansas

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>