Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team uses satellite to track Earth's water

02.02.2007
For the first time, scientists have used a spaceborne instrument to track the origin and movements of water vapor throughout Earth's atmosphere, providing a new perspective on the dominant role Earth's water cycle plays in weather and climate.

A team of scientists from the University of Colorado at Boulder and NASA's Jet Propulsion Laboratory in Pasadena, Calif., used the Tropospheric Emission Spectrometer on NASA's Aura satellite to gather data on "heavy" and "light" water vapor in order to retrace the history of water over oceans and continents, from ice and liquid to vapor and back again. The researchers were able to distinguish between the two because heavy water vapor molecules have more neutrons than lighter ones do.

By analyzing the distribution of the heavy and light molecules, the team was able to deduce the sources and processes that cycle water, the most abundant greenhouse gas in Earth's atmosphere, said David Noone of CU-Boulder's Cooperative Institute for Research in Environmental Sciences. Noone, an assistant professor in CU-Boulder's atmospheric and oceanic sciences department, is the corresponding author of a paper on the subject that appears in the Feb. 1 issue of Nature.

The team found that tropical rainfall evaporation and water "exhaled" by forests are key sources of moisture to the tropical atmosphere. The researchers noted that much more water than expected is transported into the lower troposphere over land than over oceans, especially over the Amazon River basin and in tropical Africa.

"One might expect most of the water to come directly from the wet ocean," said Noone. "Instead, it appears that thunderstorm activity over the tropical continents plays a key role in keeping the troposphere hydrated."

The team found that in the tropics and regions of tropical rain clouds, rainfall evaporation significantly adds moisture to the lower troposphere, with typically 20 percent and up to 50 percent of rain there evaporating before it reaches the ground. "This mechanism allows the atmosphere to retain some of the water, which can be used later, for instance, to make clouds," Noone said.

The strength and location of such evaporation gives scientists new insights into how water in Earth's atmosphere helps move energy from Earth's surface upward, important since the main role of the atmosphere in Earth's climate system is to take energy deposited by the sun and return it to space, said Noone.

The team also found evidence that water transported upward by thunderstorm activity over land originates from both plant "exhalation" in large forests and evaporation over nearby oceans. The balance between the two sources indicates how vegetation interacts with climate and helps maintain regional rainfall levels.

"This link between vegetation, hydrology and climate has implications for how societies choose to manage their ecological resources," said Noone. "Our measurements provide a baseline against which future changes in vegetation and climate interactions can be measured."

The team said there has been a general lack of information on the way water moves around in Earth's atmosphere - where it comes from and where it ends up.

"We know the details of this journey are critical for understanding clouds and climate, as well as changes in precipitation patterns and water resources," said Noone.

"Our study measures the conditions under which precipitation and evaporation occur, providing insights into the processes responsible. Better knowledge of these processes ultimately leads to a clearer understanding of the factors that drive the global water cycle and its importance in climate and global climate change."

"Since we measure the history of water, so to speak, we can tell the difference between air masses that have undergone extensive condensation from those that are dominated by evaporation from the ocean surface," said co-author John Worden of JPL.

"These results also lay the groundwork for research to help interpret the isotopic measurements that scientists use to study Earth's climate in the past," said JPL co-author Kevin Bowman.

David Noone | EurekAlert!
Further information:
http://tes.jpl.nasa.gov/
http://www.colorado.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>