Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne dust causes ripple effect on climate far away

30.01.2007
When a small pebble drops into a serene pool of water, it causes a ripple in the water in every direction, even disturbing distant still waters.

NASA researchers have found a similar process at work in the atmosphere: tiny particles in the air called aerosols can cause a rippling effect on the climate thousands of miles away from their source region.

The researchers found that dust particles from the desert regions in northern Africa can produce climate changes as far away as the northern Pacific Ocean. Large quantities of dust from North Africa are injected into the atmosphere by dust storms and rising air. Airborne dust absorbs sunlight and heats the atmosphere. The heating effect ripples through the atmosphere, affecting surface and air temperatures as the dust travels.

"These highs and lows in air temperatures caused by radiation-absorbing aerosols can lead to 'teleconnection’, which refers to changes in weather and climate in one place caused by events happening far away, often more than half way around the globe," said William Lau, Chief of the Laboratory for Atmospheres at NASA's Goddard Space Flight Center, Greenbelt, Md., and author of a study published last fall in the American Meteorological Society's Journal of Climate. "North African dust can be lifted high into the atmosphere by storms and then transported across the Atlantic and Caribbean, where its effect can be far-reaching."

From a climate point of view, aerosols can block solar radiation (incoming heat and light from the sun) from hitting the Earth's land surface. When sunlight is blocked, it can cause the Earth's surface to cool, and/or the aerosols can absorb solar radiation and cause the atmosphere in the vicinity of the airborne dust to get warmer.

According to Lau, researchers thought for years that heat changes in the atmosphere from aerosols only caused local changes in temperatures. However, "we now know they may cause more than local changes to climate," he said. Lau's computer model indicates that the heat changes caused by aerosols affect the heat balance in the air over North Africa. That change in heat creates large waves in the atmosphere that ripple as far away as Eurasia and the North Pacific.

Researchers have created complex numerical models to simulate the "still waters" of the atmosphere during North African spring – a season when climate conditions are relatively calm with light winds and light rain.

Lau's team carried out a numerical model experiment that included aerosol forcing, and then another one with identical initial conditions and lower boundary conditions, except that the aerosol forcing is removed. By comparing the weather patterns in the two experiments, they can deduce the effect of aerosol forcing. They observed the aerosols made an impact far away from their source region. In setting up their experiment, the researchers chose the northern Sahara Desert in springtime, when the weather conditions are relatively calm, allowing aerosols, like dust, to build up more in air.

An "atmospheric teleconnection" happens when unusual patterns of air pressure and air circulation happen in one place, and the energy is dispersed over large distances around the globe to other places. An atmospheric teleconnection can lead to changes in sea level pressure and temperature around the world. This study saw changes from North Africa through Eurasia to the North Pacific.

Most interesting, Lau's team found that North African-dust teleconnection led to strong cooling over the Caspian Sea (a land-locked body of water between Russia and Europe) and warming over central and northeastern Asia, where man-made aerosol concentrations are low.

"Elevated aerosols in large quantities such as dust from North Africa, or biomass burning may have global impacts," said Lau. "We expect to observe more and more real-world examples of this teleconnection phenomenon with the high volume of aerosols generated by nature and human activities around the world."

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2006/particle_ripple.html

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>