Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overconfidence leads to bias in climate change estimations

19.12.2006
Just as overconfidence in a teenager may lead to unwise acts, overconfidence in projections of climate change may lead to inappropriate actions on the parts of governments, industries and individuals, according to an international team of climate researchers.

"Climate researchers often use a scenario approach," says Dr. Klaus Keller, assistant professor of geosciences, Penn State. "Nevertheless, scenarios are typically silent on the question of probabilities."

The Intergovernmental Panel on Climate Change, which is in its third round of climate assessment, uses models that scenarios of human climate forcing drive. These forcing scenarios are, the researchers say, overconfident.

"One key question is which scenario is likely, which is less likely and which they can neglect for practical purposes," says Keller who is also affiliated with the Penn State Institutes of Energy and the Environment. "At the very least, the scenarios should span the range of relevant future outcomes. This relevant range should also include low-probability, high-impact events."

The researchers provide evidence that the current practice neglects a sizeable fraction of these low probability events and results in biased outcomes. Keller; Louis Miltich, graduate student; Alexander Robinson, Penn State research assistant now on a Fulbright Fellowship in Berlin, and Richard Tol, senior research officer, Economic and Social Research Institute, Dublin, Ireland, developed an Integrated Assessment Model to derive probabilistic projections of carbon dioxide emissions on a century time scale. Their results extended far beyond the range of previously published scenarios, the researchers told attendees today (Dec. 15) at the fall meeting of the American Geophysical Union in San Francisco.

Noting that overconfidence is an often observed effect, Keller cites a study reviewing estimates of the weight of an electron as an example. The reported range for the weight of an electron from 1955 to the mid-1960s did not include the weight considered correct today. On a more closely related topic, the range of energy use projections in the 1970s typically missed the observed trends.

"We need to identify key sources of overconfidence and critically reevaluate previous studies," says Keller.

According to their study, past scenarios of carbon dioxide emissions can miss as much as 40 percent of probabilistic projection, missing a large number of low-probability events. The omitted scenarios may include low-probability, high-impact events.

"If low-probability, high-impact events exist, such as threshold responses of ocean currents or ice sheets, omitting these scenarios can lead to poor decision making," says Keller. "We need to see the full range of possible scenarios, because the actual outcome may not be contained in the central estimate.

"New tools and faster computers enable a considerably improved uncertainty analysis," he adds. "If you do not tell how likely the probability of a scenario is, people are left to guess. A sound scientific analysis can at least tell how consistent these guesses are with the available observations and simple, but transparent assumption."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Welcome Committee for Comets
19.07.2019 | Technische Universität Braunschweig

nachricht Sea level rise: West Antarctic ice collapse may be prevented by snowing ocean water onto it
18.07.2019 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>