Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overconfidence leads to bias in climate change estimations

19.12.2006
Just as overconfidence in a teenager may lead to unwise acts, overconfidence in projections of climate change may lead to inappropriate actions on the parts of governments, industries and individuals, according to an international team of climate researchers.

"Climate researchers often use a scenario approach," says Dr. Klaus Keller, assistant professor of geosciences, Penn State. "Nevertheless, scenarios are typically silent on the question of probabilities."

The Intergovernmental Panel on Climate Change, which is in its third round of climate assessment, uses models that scenarios of human climate forcing drive. These forcing scenarios are, the researchers say, overconfident.

"One key question is which scenario is likely, which is less likely and which they can neglect for practical purposes," says Keller who is also affiliated with the Penn State Institutes of Energy and the Environment. "At the very least, the scenarios should span the range of relevant future outcomes. This relevant range should also include low-probability, high-impact events."

The researchers provide evidence that the current practice neglects a sizeable fraction of these low probability events and results in biased outcomes. Keller; Louis Miltich, graduate student; Alexander Robinson, Penn State research assistant now on a Fulbright Fellowship in Berlin, and Richard Tol, senior research officer, Economic and Social Research Institute, Dublin, Ireland, developed an Integrated Assessment Model to derive probabilistic projections of carbon dioxide emissions on a century time scale. Their results extended far beyond the range of previously published scenarios, the researchers told attendees today (Dec. 15) at the fall meeting of the American Geophysical Union in San Francisco.

Noting that overconfidence is an often observed effect, Keller cites a study reviewing estimates of the weight of an electron as an example. The reported range for the weight of an electron from 1955 to the mid-1960s did not include the weight considered correct today. On a more closely related topic, the range of energy use projections in the 1970s typically missed the observed trends.

"We need to identify key sources of overconfidence and critically reevaluate previous studies," says Keller.

According to their study, past scenarios of carbon dioxide emissions can miss as much as 40 percent of probabilistic projection, missing a large number of low-probability events. The omitted scenarios may include low-probability, high-impact events.

"If low-probability, high-impact events exist, such as threshold responses of ocean currents or ice sheets, omitting these scenarios can lead to poor decision making," says Keller. "We need to see the full range of possible scenarios, because the actual outcome may not be contained in the central estimate.

"New tools and faster computers enable a considerably improved uncertainty analysis," he adds. "If you do not tell how likely the probability of a scenario is, people are left to guess. A sound scientific analysis can at least tell how consistent these guesses are with the available observations and simple, but transparent assumption."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>