Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon dioxide emissions predicted to reduce density of Earth's outermost atmosphere by 2017

13.12.2006
Impacts of climate change seen in both upper and lower atmospheres
Carbon dioxide emissions from the burning of fossil fuels will produce a 3 percent reduction in the density of Earth's outermost atmosphere by 2017, according to a team of scientists from the National Center for Atmospheric Research (NCAR) and Pennsylvania State University (PSU).

The research appears in the latest issue of the journal Geophysical Research Letters, and will be presented today at the American Geophysical Union conference in San Francisco, Calif.

"We're seeing climate change manifest itself in the upper as well as lower atmosphere," said NCAR scientist Stan Solomon, a co-author of the study. "This shows the far-ranging impacts of greenhouse gas emissions."

Lower density inthe thermosphere, which is the highest layer of the atmosphere, would reduce the drag on satellites in low Earth orbit, allowing them to stay airborne longer. Forecasts of upper-level air density could help NASA and other agencies plan the fuel needs and timing of satellite launches more precisely, potentially saving millions of dollars.

Confirming a prediction

Recent observations by scientists tracking satellite orbits have shown that the thermosphere, which begins about 60 miles above Earth and extends up to 400 miles, is beginning to become less dense, said Robert Kerr, program director in the National Science Foundation's (NSF) Division of Atmospheric Sciences.

This confirms a prediction made in 1989 by Roble and Bob Dickinson at NCAR that the thermosphere will cool and contract because of increasing carbon dioxide levels. The new study is the first to analyze whether the observed change will become more pronounced over the next decade.

At heights of more than 60 miles, one of the main elements of the atmosphere is atomic oxygen, a single atom of oxygen. As carbon dioxide increases near Earth's surface, it gradually diffuses upward and absorbs heat through collisions with atomic oxygen. It then radiates the heat away to space through infrared radiation, and the result is a net cooling of the upper atmosphere. As the molecules cool and settle, the thermosphere loses density.

Also affecting the thermosphere is the 11-year cycle of solar activity. During the active phase of the cycle, ultraviolet light and energetic particles from the sun increase, producing a warming and expansion of the upper atmosphere. When solar activity wanes, the thermosphere settles and cools.

In order to analyze recent solar cycles and peer into the future, the NCAR-PSU team used a computer model of the upper atmosphere that incorporates the solar cycle as well as the gradual increase of carbon dioxide due to human activities. The team also used a prediction for the next solar cycle, issued by NCAR scientist Mausumi Dikpati and colleagues, that calls for a stronger-than-usual solar cycle over the next decade. The model showed a decrease in thermospheric density from 1970 to 2000 of 1.7 percent per decade, or about 5 percent overall, which agrees with observations. The team found that the decrease was about three to four times more rapid during solar minimum than solar maximum.

Impacts on satellites

Many satellites, including the International Space Station and the Hubble Space Telescope, follow a low Earth orbit at altitudes close to 300 miles. Over time, the upper atmosphere drags the satellites closer to Earth. The amount of drag depends on the density of the thermosphere, which is why satellite planners need better predictions of how the thermosphere changes.

"Satellite operators noticed the solar cycle changes in density at the very beginning of the space age," says Solomon. "We are now able to reproduce the changes using the NCAR models and extend them into the next solar cycle."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>