Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midges send undeniable message -- planet is warming

13.12.2006
Small insects that inhabit some of the most remote parts of the United States are sending a strong message about climate change. New research suggests that changes in midge communities in some of these areas provide additional evidence that the globe is indeed getting warmer.

Researchers created a history of changing midge communities for six remote mountain lakes in the western United States. Midges, which resemble mosquitoes but usually don't bite, can live nearly anywhere in the world where there is fresh water.

The insect remains revealed a dramatic shift in the types of midges inhabiting these lakes in the last three decades, said David Porinchu, the study's lead author and an assistant professor of geography at Ohio State University.

“Climate change has had an overriding influence on the composition of the midge communities within these lakes,” he said. “The data suggest that the rate of warming seen in the last two decades is greater than any other time in the previous century.”

The data suggest that, starting around 25 years ago, warmer-water midges began to edge out cooler-water midge species around these remote lakes.

“People would like to believe that these mountainous environments may be immune to climate change, but these are some of the first areas to feel the impact of warmer temperatures,” Porinchu said.

He and his colleagues presented their findings December 15 in San Francisco at the annual meeting of the American Geophysical Union.

The researchers gathered sediment from six small lakes in the Great Basin of the western United States – a vast watershed bounded roughly by the Sierra Nevada and Rocky Mountain ranges. Since the lakes are accessible only by foot trail, the researchers carried in an inflatable raft during the summer months in order to collect sediment samples from the middle of the lakes. The lakes range from 8.2 feet (2.5 meters) to 34.5 feet (10.5 meters) deep.

The scientists collected sediment in cylindrical plastic tubes, gathering several samples from each lake. They didn't need much sediment – just four inches (10 cm) of lake-bottom residue can represent nearly 100 years' worth of sedimentation, Porinchu said.

“The amount of sediment that trickles out of the water column to the bottom of these lakes every year is so low because these lakes are at such high elevations – few, if any, trees grow at these elevations,” he said. “There just isn't much material entering the lakes.”

Once they were back in the laboratory, the researchers sliced the sediment cores into thin slivers about 0.2 inches (0.5 cm) thick. Each sliver represents a five or 10-year span, Porinchu said. They calculated the age of single sediment layers by using lead-210, an isotope of lead that decays at a constant rate and, therefore, can serve as a chronological aid.

Using a microscope, the researchers then searched the sediment for larval remains of the midges. Specifically, they were looking for larval head capsules, which are made of a hard, semi-transparent material called chitin. These head capsules become embedded in sediment once they are shed. Chitin, also a component of insect exoskeletons and the shells of crustaceans, doesn't readily degrade in the sediment of these lakes.

The researchers determined the type of midges that lived in the lakes based on specific variations in certain head capsule structures, such as differences in the number, size, shape and orientation of teeth.

“In the upper layers of most of the sediment samples – those representing the last 25 to 30 years – we see head capsules from midges that normally thrive in slightly warmer water temperatures,” Porinchu said. “And the cooler-water midges have nearly, or completely, disappeared.”

Surface water temperatures in these lakes have risen anywhere from 0.5 to 1 degree since the 1980s.

“Although that doesn't seem to be a huge increase, just a slight fluctuation in water temperatures can significantly affect the rate of egg and larval development,” Porinchu said.

And the majority of midge species living in these six lakes in the last 30 years thrive in temperatures ranging from 58.8 to 60 degrees F (14.9 to 15.6C), while cooler-water midges prefer temperatures in the 57 to 58.1F (13.9 to 14.5C) range.

“Above-average surface water temperatures typified the late 20th century in all of the lakes that we studied,” Porinchu said. “It's clearly an indication that something is happening that is already affecting aquatic ecosystems in these fragile, high-elevation lakes.”

Porinchu conducted the study with researchers from the National University of Ireland in Galway; the University of California, Los Angeles; the University of Western Ontario in London, Ontario; and Middlebury College in Middlebury, Vt.

David Porinchu | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Tracking down climate change with radar eyes
17.07.2019 | Technical University of Munich (TUM)

nachricht New sensor could shake up earthquake response efforts
11.07.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>