Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Climate and the Solar Cycle

06.12.2006
EGU Journal Highlights - Atmospheric Chemistry and Physics - December 2006

How much of global climate change is caused by fluctuations of the Sun's radiation? A reliable assessment of human-induced global warming requires an answer to this question. Now it appears that the influence of the solar cycle on Earth's climate is much less than most atmospheric scientists assumed so far.

This is the argument of Jan Kazil, Edward R. Lovejoy, Mary C. Barth and Keran O'Brien from NOAA, NCAR, the University of Colorado and Northern Arizona University. They published their findings in the on-line journal Atmospheric Chemistry and Physics of the European Geosciences Union.

Read article: http://www.atmos-chem-phys.net/6/4905/2006/acp-6-4905-2006.html
During the minimum phase of the Sun's decadal activity cycle, the solar magnetic field weakens and allows more galactic cosmic rays to reach Earth's atmosphere. It appears that global cloud cover and reflectivity could be enhanced at solar minimum compared to solar maximum, and more sunlight reflected back to space.

This is caused by a complex chain of events whereby more ions lead to an increased aerosol production in the atmosphere. In this paper Kazil and colleagues show that this effect accounts for a variation in warming of the Earth by the Sun of no more than 0.22 W/m2 in the course of a solar cycle. A second finding supports the theory that aerosol particles observed near the surface of tropical oceans may have their origin at higher altitudes, where they form from convectively lifted near-surface air.

Clouds are brighter than the Earth's surface and reflect a considerable amount of the incoming solar radiation back to space. Hence, they strongly influence the planet's temperature and climate. Aerosols, which are small particles in the air, are essential for the formation of cloud droplets, and changes in aerosol concentrations and properties affect the reflectivity of clouds. Aerosols are either directly emitted into the atmosphere or form from gas phase constituents such as sulphuric acid.

Atmospheric ions are likely to act as agents for the formation of liquid aerosols via the formation of "seed particles" (called condensation nuclei) because they greatly stabilize small clusters of molecules with respect to evaporation.

The main source of ions in the atmosphere are galactic cosmic rays, whose intensity is modulated by the decadal solar activity cycle. It has therefore been suggested that the change in ion production resulting from the modulation of galactic cosmic rays by the solar cycle influence atmospheric aerosol concentrations. This, in turn, leads to a variation in cloud cover, and consequently the amount of sunlight reflected back to space.

Kazil et al. used a computer model which describes the formation of sulphuric acid / water aerosol particles from ions on global scales. Their model simulations show that at solar minimum, when the ion production is at its maximum, warming of the Earth by sunlight is reduced by at most 0.22 W/m2. This is due to the enhanced cloud reflection, relative to solar maximum when ion production is at its minimum. This upper limit to the effect is less than the concurrent reduction by 0.24 W/m2 in warming of the Earth by sunlight due to the decrease of solar brightness from solar maximum to minimum.

This finding indicates only a weak effect of galactic cosmic rays on clouds due to aerosol formation from ions, and hence on the Earth's climate. These results, however, do not preclude the possibility that other mechanisms connect solar variability and climate.

A second finding is that over tropical oceans, aerosol generation from the gas phase near the surface is inefficient compared with that at higher altitudes. Here, aerosol particles form readily because of the combination of low temperatures and frequent injection of near-surface air by convection. This supports the theory that aerosol particles observed near the surface of tropical oceans may have their origin at higher altitudes, where they form due to convective lifting of near-surface air.

Aerosol nucleation over oceans and the role of galactic cosmic rays
J. Kazil, E. R. Lovejoy, M. C. Barth, and K. O'Brien
Atmospheric Chemistry and Physics, Volume 6, Number 12, pp. 4905-4924.
Read the full article: http://www.atmos-chem-phys.net/6/4905/2006/acp-6-4905-2006.html

Author's address:

Dr Jan Kazil
Cooperative Institute for Research in Environmental Sciences
University of Colorado
Boulder, CO, USA
jan.kazil@noaa.gov
+1 303 497-7994

Dr. Frederik M. van der Wateren | idw
Further information:
http://www.egu-media.net/
http://www.atmos-chem-phys.net/6/4905/2006/acp-6-4905-2006.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>