Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists want to solve puzzle of excess water vapor near cirrus clouds

01.12.2006
A number of researchers in recent years have reported perplexing findings of water vapor at concentrations as much as twice what they should be in and around cirrus clouds high in the atmosphere, a finding that could alter some conclusions about climate change.

Now a group of European and U.S. scientists is advocating a broad research effort to solve the puzzle and understand just what is occurring in cirrus clouds, wispy sheets of ice crystals 6 to 10 miles above the Earth's surface.

"Based on our current knowledge, it shouldn't exist," said Marcia Baker, a University of Washington professor of Earth and space sciences. She is one of six climate researchers who authored a Perspectives article in the Nov. 30 edition of the journal Science promoting an extensive effort to investigate the dilemma.

Part of the problem is that many atmospheric scientists have dismissed the findings as erroneous because the current understanding of atmospheric conditions and cirrus clouds would make the water vapor anomaly impossible, Baker said. Yet a number of pieces of evidence published in peer-reviewed journals and presented at scientific meetings during the last six years have supported the finding.

Clouds and particles in the atmosphere play a significant role in regulating the Earth's temperature because they help determine how much of the sun's heat and energy is reflected back into space and they trap outgoing radiation from the Earth's surface. Cirrus clouds also are important in regulating the distribution of water vapor, the most important greenhouse gas, in the upper troposphere.

"We have thought our models of the formation and evolution of cirrus clouds are generally adequate in how they portray the role of cirrus clouds in regulating water vapor, but if the recent findings are accurate and high humidities are widespread, our assumptions could need significant adjustment," Baker said.

"The point is to bring this to the more general science audience as a broad puzzle, but also to lay the groundwork for research to solve the puzzle," she said.

Cirrus clouds form in the upper troposphere and modulate the exchange of water between the troposphere and the stratosphere. Vapor in the upper troposphere can rise into the stratosphere but tiny ice crystals can fall back toward the surface.

Outside the clouds, there are water vapor and minute atmospheric particles called aerosols, but no ice crystals. Scientists have come to expect that new ice crystals will begin to form in aerosols when vapor levels rise to the point at which they are 60 percent above equilibrium with the surrounding air. Yet measurements have shown that vapor levels can reach 90 percent to 100 percent above equilibrium without forming new ice particles.

Inside the clouds, it is expected that vapor levels above equilibrium cannot be maintained, yet evidence shows that often vapor levels are as much as 30 percent above equilibrium in large areas of clouds.

Scientists have speculated about what causes these anomalies. It is possible the aerosols might have as-yet undiscovered properties that prevent crystals from forming in some conditions, or there could be some kind of coating on the aerosols that prevents ice from forming, Baker said. There also could be some undiscovered property of ice crystals that prevents them from growing in certain conditions.

"There could be a different phase of ice at the temperatures and pressures in cirrus clouds that has a higher equilibrium for vapor," Baker said. "These are the kinds of questions for which we are trying to find answers."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>