Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stormy Days Ahead for Coral Reefs

30.11.2006
The increasing violence of storms under global climate change will have major effects on coral reefs – and has important implications for their future management.

A scientific team from the ARC Centre of Excellence for Coral Reef Studies (CoECRS) at James Cook University has produced the world’s first engineering model to predict how much damage a reef is likely to suffer when confronted with might of an angry sea.

In a paper in the international scientific journal Nature,Dr Joshua Madin and Dr Sean Connolly use mathematical models to calculate the forces that coral is subjected to by wave, storm surge or tsunami, and the probability of the colonies being ripped from the sea-bed.

How coral assemblages respond to the power of the sea is essential for understanding the natural distribution of coral types on present-day reefs as well as for projecting how they will change in response to more violent or frequent storms, the researchers say.

“Coral reef experts have long had a general sense of which coral shapes are more vulnerable during storms than others,” says the study’s lead author, Dr. Madin, who now works at the National Centre for Ecological Analysis and Synthesis (NCEAS) in California, USA. “However, to really predict how these events impact the dynamics of coral reefs we needed a way to quantify these vulnerabilities.”

“Our study offers a solution to this longstanding problem by factoring in the shape of different coral colonies, the strength of the sea-bed to which they attach and the change in force of the waves as they move across the reef.

“This enables us to predict the likely changes in composition of the coral in response to present and future storms or tsunamis.”

This understanding, in turn, can be used by managers to better understand how the world’s coral reefs might change under a more unpredictable climate, the researchers say. “The predictive tool we have developed allows managers to assess the vulnerability of their reefs to extreme wave events,” says Dr. Madin. “The ability to estimate the potential damage on a reef for different disaster scenarios could help managers plan for economic losses as well as promote strategies that help the reef recover.”

The researchers’ model uses mathematical models borrowed from engineering theory to translate the movement of storm waves into mechanical stresses on the coral in different parts of the reef, incorporates the various shapes of coral colonies and calculates whether they will be dislodged during extreme weather.

The research introduces a new concept – colony shape factor (CSF) – to translate the myriad shapes and sizes of coral colonies onto a simple scale that measures their vulnerability to dislodgment. Any severe event, like a cyclone, imposes a threshold that can be scored on the same scale, allowing scientists to determine which corals will live and which will die.

The most vulnerable corals are the table corals which have a broad flat top supported by a narrow stalk, making them more susceptible to strong wave forces than bushy or mounded corals. Vulnerability also depends on whether the coral grows on the front, crest, flat or the back of the reef, where the force of the waves progressively dies away.

The team ran a field test at Lizard Island, in the northern part of the Great Barrier Reef, taking digital photographs of corals, and calculating their vulnerability.

They found that the threshold imposed by the previous year’s biggest storm predicted the pattern of coral sizes and shapes almost perfectly. “There were a lot of table corals present that went right up to the threshold from the last big storm, and then suddenly nothing above it,” says Dr Connolly, a CoECRS researcher and Senior Lecturer at James Cook University. “They even followed the predicted trends from the reef crest to the reef back.”

The researchers say that more severe storms, by themselves, would probably not pose a large threat to reefs. “Corals are adapted to life in stormy seas. Even the vulnerable species are quite stable when they’re young,” says Dr Connolly. “They also tend to grow and mature quickly, so the species can recover before the next big storm arrives.”

However, one effect of the increased production of greenhouse gases is an increase in the acidity of the ocean. This is likely to reduce the stability of coral reefs, and amplify the damage done by tropical storms in coming decades.

Moreover, other effects of global warming and human activity could impair reefs’ capacity to bounce back from periods of high wave forces, say the researchers. These include episodes of unusually hot temperatures, which can cause corals’ cells to become toxic (“coral bleaching”); and overfishing, which can deplete the fish that eat seaweeds and dead coral and keep the reef clear for the next generation of corals.

“Regardless of whether we think of more severe storms as a looming threat or just the ramping up of a natural cycle, one thing is certain,” says Dr Connolly. “To predict how coral reefs will look under different future scenarios, and to plan accordingly, we needed to know exactly how wave forces impact who lives and who dies on the reef. These new models provide us with that essential tool.”

More information:
Josh Madin, National Center for Ecological Analysis and Synthesis, +1 (805) 893 7108 or +1 (805) 452 7017
Dr Sean Connolly, ARC Centre of Excellence for Coral Reef Studies & JCU, 07 4781 4242 or 0419422815
Jenny Lappin, ARC Centre of Excellence for Coral Reef Studies, 07 4781 4222
Jim O’Brien, James Cook University Media Office, 07 4781 4822
Margaret Connors, National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, USA, +1 (805) 892 4728

Sean Connolly | EurekAlert!
Further information:
http://www.coralcoe.org.au/

More articles from Earth Sciences:

nachricht Volcanoes and glaciers combine as powerful methane producers
20.11.2018 | Lancaster University

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>