Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lucky break gives scientists unique view of underwater eruption

28.11.2006
A combination of luck and being in the right place at the right time allowed a University of Florida geologist and other scientists to capture and record an undersea volcanic eruption for the first time ever.

The eruption, which took place early this spring thousands of feet below the surface of the Pacific Ocean, is described in a paper set for release Thursday in Science Express, the journal Science’s online magazine.

“Never before have we had instruments in place like this that recorded an eruptive event on the seafloor,” said Mike Perfit, a UF professor of geology.

Perfit was among the scientists who visited the eruption shortly after it took place aboard the deep-sea submersible Alvin. The project was headed by Maya Tolstoy, a seismologist with Columbia University’s Lamont Doherty Earth Observatory and the lead author of the Science paper.

Perfit said the eruption occurred about 400 miles west of Mexico along a massive volcanic mountain range called the East Pacific Rise. Fortuitously, it was one of three active undersea volcanic areas that were selected for high-intensity research in the late 1990s as part of the National Science Foundation’s RIDGE research program. As a result, geologists, biologists, geophysicists and other specialists had gathered a storehouse of samples, data and photos from the site.

The scientists also had numerous instruments in place on the ocean bottom 8,000 feet below the surface – including a dozen “ocean bottom seismometers.” These devices listen for and measure seismic activity which is recorded on a small computer hooked to a buoyant sphere. Seismologists on the research vessel retrieve the instrument by electronically signaling the seismometer to release from the seafloor, which then carries the hard drive full of data to the ocean surface.

When a group of scientists visited the East Pacific Rise site in April on a routine mission to retrieve the seismometers, they were surprised to discover that only four detached and rose to the surface, Perfit said. Three others responded to scientists’ signals but refused to bob to the surface. “They were responding, but they weren’t coming up. Usually you might lose one, but you don’t lose that many of your ocean bottom seismometers,” Perfit said.

Intrigued, the scientists used onboard equipment to measure temperature, salinity and turbidity near the ocean bottom. They discovered the water was unusually cloudy and warm above the ridge crest, indicating a possible eruption. To confirm it, the scientists retrieved some ocean floor lava from the ocean floor. Subsequent tests by Perfit and K. Rubin, a colleague at the University of Hawaii, confirmed that the rock was formed very recently as the result of a deep sea volcanic eruption.

Scientists in the RIDGE Program quickly mobilized and sent another ship to the site equipped with a deep-diving camera system. Towed behind the ship, the cameras revealed “brand new black glassy lava,” Perfit said. Unlike the explosive lava-spewing volcanoes on Earth’s surface, deep sea volcanoes emit lava slowly because of the enormous ocean pressure. This lava forms pillow-like structures across the ocean bottom as it seeps out of seafloor fissures.

The cameras also failed to record any visible ocean bottom life with the exception of thick white masses of bacterial colonies that coated the lava. That was in sharp contrast to thriving life recorded at the site in the years before. “There was at least one site that was a lush site with tubeworms, crabs and mussels and it was just gone, just buried,” Perfit said.

Perfit was among the scientists aboard the submersible Alvin who did repeated dives along the site in June and July. Among other things, the group located the ocean bottom seismometers and quickly discovered the problem – they had become enveloped and trapped in the lava flow.

The eruption allows scientists an unprecedented view of the “death and birth of a mid-ocean ridge from all perspectives – geological, biological, geophysical,” Perfit said.

That in turn will lead to much greater understanding of the unique underwater phenomena. For example, next April scientists, including Perfit, hope to retrieve some of the seismometers because they are likely to contain new information about the seismic activity leading up to and during the eruption -- and possibly predict these events. “We’ll be lucky if we catch another event like this in my lifetime,” Perfit said. “It really revitalizes the field.”

Mike Perfit | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

ETRI exchanged quantum information on daylight in a free-space quantum key distribution

10.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>