Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies Raise Questions about Climate Change

04.02.2002


Image: Courtesy of NASA


Climate prediction just got trickier, according to two new studies appearing in the current issue of the journal Science. Analysis of more than two decades of satellite data shows that more sunlight entered the tropics and more heat escaped to space in the 1990s than a decade earlier. Moreover, current climate models fail to account for the new findings, suggesting that they may contain more uncertainty than previously thought.

For the earth’s climate to remain unchanged, the planet’s energy budget must equal zero—that is, the planet must emit or reflect the same amount of energy that enters as sunlight. But that’s not what Columbia University researcher Junye Chen and colleagues found when they studied thermal radiation emitted by earth (left sphere in image) and reflected sunlight (right sphere in image) over the tropics. Between 1985 and 2000, they found, the amount of energy emitted increased while the amount reflected decreased, with most of the change occurring after 1990. The findings suggest that the movement of air masses over the tropics—the so-called Hadley and Walker circulation cells—increased in strength, causing rising air to become moister and sinking air drier.

In the second study, Bruce Wielicki of NASA’s Langley Research Center and colleagues demonstrated that the earth’s radiative energy budget varies on timescales as short as a decade, making it much more variable than previously thought. Using satellite data covering 22 years, they identified peaks in the amount of energy escaping the atmosphere and seasonal variations in the amount of incoming radiation. "We tracked the changes to a decrease in tropical cloudiness that allowed more sunlight to reach the earth’s surface," Wielicki explains. "But what we want to know is why the clouds would change." Failure to fully account for the effects of clouds is one of the greatest weaknesses of current climate models. Indeed, four major climate models could not reproduce the tropical cloud changes or generate what the researchers call the "more subtle, but still large, decadal changes seen in the radiation data."



The scientists do not yet know what causes this variation in tropical radiation. "We think this is a natural fluctuation," Anthony Del Genio of NASA’s Goddard Institute for Space Studies says, "but there is no way to tell yet." Still, he advises, even before knowing the cause of the variability, researchers should attempt to modify their models in order to accommodate it.

Sarah Graham | Scientific American

More articles from Earth Sciences:

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

22.05.2019 | Power and Electrical Engineering

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>