Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Find New Origins of Appalachian Mountains

20.11.2006
Geologists have developed a new theory to explain how and when the Appalachian Mountain range was created. Their research redraws the map of the planet from 420 million years ago.

The scientists recently discovered a piece of the Appalachian Mountains in southern Mexico, a location geologists long had assumed was part of the North American Cordillera. The Cordillera is a continuous sequence of mountain ranges that includes the Rocky Mountains. It stretches from Alaska to Mexico and continues into South America.

For the past decade, geologists have collected information from Mexico’s Acatlán Complex, a rock outcropping the size of Massachusetts. As they uncovered each new piece of data from the complex, evidence contradicting earlier assumptions about the origins of that part of Mexico emerged.

“It was a story that had the Appalachians written all over it,” said Damian Nance, Ohio University professor of geological sciences and lead author of an article detailing the findings, which was published in the October issue of Geology. “This will change the way geologists look at Mexico.”

It also changes existing theory regarding the creation of the Appalachians, which has radically altered scientists’ understanding of the planet’s geography, said Nance. Age data, newly unearthed fossils and chemical analysis of the rocks show that the complex is much younger than previously thought. It records a pivotal part of the Appalachian story not preserved elsewhere.

According to the conventional map of 420 million years ago, two main land masses were separated by the Rheic Ocean. In the south sat Gondwana, a supercontinent consisting of South America, Africa, India, Australia and Antarctica. To the north was Laurussia, made up of North America, Greenland, Europe and part of Asia. The old map showed the Acátlan Complex attached to Laurussia. The complex broke off Gondwana about 80 million years earlier, drifted toward North America along with the other land masses, closing an older ocean, known as the Iapetus Ocean, as it did so. The collision created the Appalachian Mountains.

The new map looks rather different.

Evidence collected by Nance and his colleagues from rocks in the Acatlán Complex shows that its collision with Laurussia actually occurred about 120 million years later. The rocks once existed on an ancient ocean floor, but this ocean has proven to be the Rheic, not Iapetus as previously thought.

The explanation, Nance and his fellow authors say, is that the Acatlán Complex was originally attached to Gondwana. Gondwana and the complex eventually slammed into North America, closing the Rheic Ocean in the process. This cataclysmic crunch of continental plates formed the goliath land mass known as Pangea, Nance said, and created the Appalachian Mountains.

“We believe we have found the missing piece of the Rheic suture where Gondwana and North America converged,” said Nance. “All the evidence point to that and, as far as we know, it is the best preserved piece of this puzzle in North America.”

Now geologists from around the world, funded by the United Nations Educational, Scientific and Cultural Organization (UNESCO), are expanding the search for evidence of the Rheic Ocean in order to unravel its history from initial opening to final closure.

“We want to see if the ocean opened and closed everywhere at the same time or at different times like a jaw opening and closing. We want to understand the mechanics of these processes,” said Nance.

The Acatlán Complex study was funded by the National Science Foundation, the Natural Sciences and Engineering Council of Canada, the Spanish Ministry of Education and Science and a Mexican Papiit Grant.

Brent V. Miller of Texas A&M University, J. Duncan Keppie of Universidad Nacional Autonoma de Mexico, J. Brendan Murphy of St. Francis Xavier University in Nova Scotia and Jaroslav Dostal of St. Mary’s University in Nova Scotia co-authored the paper appearing in Geology.

Andrea Gibson | EurekAlert!
Further information:
http://www.ohio.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>