Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, hands-on science demos teach young students how volcanoes 'blow their tops,' spew lava

26.10.2006
Scientists describe demos at Geological Society of America meeting

A popular volcano demonstration in grade school science class rivets students' attention as it spews bubbly liquid over a tabletop, but it comes up short in explaining all the ways that volcanoes form and evolve.

The demonstration – mixing vinegar and baking soda in a clay model of a volcano – is certainly a catchy visual. Nevertheless, such traditional demos are giving way to hands-on activities that can depict the actual forces that caused Washington's Mt. St. Helens to blow or Hawaii's Kilauea to spew red-hot rivers of lava. These new methods still captivate kids, while giving them a better foundation for studying earth science in high school.

Geologists at Rutgers, The State University of New Jersey, working with education specialists, have created three hands-on demonstrations that show how heat and pressure underground move rocks and earth to build up volcanic mountains, and in some cases, cause them to literally blow their tops. These demonstrations have been among the most popular on the Rutgers Science Explorer bus, a hands-on science outreach program that travels to middle schools around the state.

The Rutgers team described its demonstrations this week at the 118th annual meeting of the Geological Society of America in Philadelphia, a gathering of 6,200 academic, government and industrial geoscientists. The presentation was part of a session on improving the understanding of geologic concepts in classes from kindergarten through high school.

"Hands-on projects leave impressions that students take with them into more advanced classes and even into their adult lives," said Ian Saginor, a doctoral student in geological sciences at Rutgers who studies volcanology in Central America. "Volcanoes continue to captivate young and old, but they are a complex feature of earth science. We felt a need to clarify exactly how they work."

This knowledge goes beyond casual intrigue or passing high school science. Saginor believes a solid grounding in earth science will prepare students to understand and act on pressing societal issues such as climate change, oil exploration, pollution and species threatened with extinction.

In one of the team's demonstrations, students shoot pieces of sponge, cork and elastic hair ties from miniature air bazookas built out of plastic drinking cups. The sponge bits fly across the room, but the corks fall nearby. The demo shows how lighter material from a volcanic eruption, such as ash, can travel thousands of miles before settling, while rocks and boulders land nearby and often trigger landslides.

Another demonstration shows how volcano debris settles after successive eruptions over thousands or millions of years. Students pour a mixture of dry beans, corn kernels and sunflower seeds into a plastic container and watch as the pieces sort themselves into layers according to size. This helps explain the layering geologists see when they study ancient volcano formations.

The third demonstration uses a slurry of sand and water in a bottle connected by hose to the bottom of a plastic box. When the student lifts the bottle and the slurry starts to flow, the sand forms a crater on the box floor that distinctly resembles a volcanic cinder cone. Besides showing how volcanoes can first form on flat land, it also demonstrates how a lot of pressure causes explosive eruptions while less pressure yields more serene lava and ash flows.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>