Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA and NOAA Announce Ozone Hole is a Double Record Breaker

23.10.2006
NASA and National Oceanic and Atmospheric Administration (NOAA) scientists report this year's ozone hole in the polar region of the Southern Hemisphere has broken records for area and depth.

The ozone layer acts to protect life on Earth by blocking harmful ultraviolet rays from the sun. The "ozone hole" is a severe depletion of the ozone layer high above Antarctica. It is primarily caused by human-produced compounds that release chlorine and bromine gases in the stratosphere.

"From September 21 to 30, the average area of the ozone hole was the largest ever observed, at 10.6 million square miles," said Paul Newman, atmospheric scientist at NASA's Goddard Space Flight Center, Greenbelt, Md. If the stratospheric weather conditions had been normal, the ozone hole would be expected to reach a size of about 8.9 to 9.3 million square miles, about the surface area of North America.

The Ozone Monitoring Instrument on NASA's Aura satellite measures the total amount of ozone from the ground to the upper atmosphere over the entire Antarctic continent. This instrument observed a low value of 85 Dobson Units (DU) on Oct. 8, in a region over the East Antarctic ice sheet. Dobson Units are a measure of ozone amounts above a fixed point in the atmosphere. The Ozone Monitoring Instrument was developed by the Netherlands' Agency for Aerospace Programs, Delft, The Netherlands, and the Finnish Meteorological Institute, Helsinki, Finland.

Scientists from NOAA's Earth System Research Laboratory in Boulder, Colo., use balloon-borne instruments to measure ozone directly over the South Pole. By Oct. 9, the total column ozone had plunged to 93 DU from approximately 300 DU in mid-July. More importantly, nearly all of the ozone in the layer between eight and 13 miles above the Earth's surface had been destroyed. In this critical layer, the instrument measured a record low of only 1.2 DU., having rapidly plunged from an average non-hole reading of 125 DU in July and August.

"These numbers mean the ozone is virtually gone in this layer of the atmosphere," said David Hofmann, director of the Global Monitoring Division at the NOAA Earth System Research Laboratory. "The depleted layer has an unusual vertical extent this year, so it appears that the 2006 ozone hole will go down as a record-setter."

Observations by Aura's Microwave Limb Sounder show extremely high levels of ozone destroying chlorine chemicals in the lower stratosphere (approximately 12.4 miles high). These high chlorine values covered the entire Antarctic region in mid to late September. The high chlorine levels were accompanied by extremely low values of ozone.

The temperature of the Antarctic stratosphere causes the severity of the ozone hole to vary from year to year. Colder than average temperatures result in larger and deeper ozone holes, while warmer temperatures lead to smaller ones. The NOAA National Centers for Environmental Prediction (NCEP) provided analyses of satellite and balloon stratospheric temperature observations. The temperature readings from NOAA satellites and balloons during late-September 2006 showed the lower stratosphere at the rim of Antarctica was approximately nine degrees Fahrenheit colder than average, increasing the size of this year's ozone hole by 1.2 to 1.5 million square miles.

The Antarctic stratosphere warms by the return of sunlight at the end of the polar winter and by large-scale weather systems (planetary-scale waves) that form in the troposphere and move upward into the stratosphere. During the 2006 Antarctic winter and spring, these planetary-scale wave systems were relatively weak, causing the stratosphere to be colder than average.

As a result of the Montreal Protocol and its amendments, the concentrations of ozone-depleting substances in the lower atmosphere (troposphere) peaked around 1995 and are decreasing in both the troposphere and stratosphere. It is estimated these gases reached peak levels in the Antarctica stratosphere in 2001. However, these ozone-depleting substances typically have very long lifetimes in the atmosphere (more than 40 years).

As a result of this slow decline, the ozone hole is estimated to annually very slowly decrease in area by about 0.1 to 0.2 percent for the next five to 10 years. This slow decrease is masked by large year-to-year variations caused by Antarctic stratosphere weather fluctuations.

The recently completed 2006 World Meteorological Organization/United Nations Environment Programme Scientific Assessment of Ozone Depletion concluded the ozone hole recovery would be masked by annual variability for the near future and the ozone hole would fully recover in approximately 2065.

"We now have the largest ozone hole on record for this time of year," said Craig Long of NCEP. As the sun rises higher in the sky during October and November, this unusually large and persistent area may allow much more ultraviolet light than usual to reach Earth's surface in the southern latitudes.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/vision/earth/lookingatearth/ozone_record.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>