Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link Discovered Between Saharan Dust Storms and Atlantic Hurricane Activity

11.10.2006
Scientists have discovered a correlation between hurricane activity in the Atlantic and thick clouds of dust that periodically rise from the Sahara Desert and blow off Africa's northwest coast.

They found that during periods of intense hurricane activity, dust was relatively scarce in the atmosphere, while in years when stronger dust storms rose up, fewer hurricanes swept across the Atlantic.

Amato Evan of the University of Wisconsin-Madison and colleagues there and at the National Oceanic and Atmospheric Administration studied 25 years of satellite data--covering 1981 to 2006--to establish the correlation. Their findings are published 10 October in Geophysical Research Letters.

"These findings are important because they show that long-term changes in hurricanes may be related to many different factors," says co-author Jonathan Foley, director of the university's Center for Sustainability and the Global Environment. "While a great deal of work has focused on the links between [hurricanes] and warming ocean temperatures, this research adds another piece to the puzzle."

Researchers have increasingly turned their attention to the environmental impact of dust, after it became clear that in some years, millions of tons of sand rise up from the Sahara Desert and float across the Atlantic Ocean, sometimes in as little as five days. If scientists conclusively prove that dust storms help to squelch hurricanes, weather forecasters could one day begin to track atmospheric dust, factoring it into their predictions for the first time, the researchers say.

"People didn't understand the potential impact of dust until satellites allowed us to see how incredibly expansive these dust storms can be," says Evan. "Sometimes during the summer, sunsets in Puerto Rico are beautiful, because of all the dust in the sky--well that dust comes all the way from Africa."

The Sahara sand rises when hot desert air collides with the cooler, dryer air of the Sahel region, just south of the Sahara, and forms wind. As particles swirl upwards, strong trade winds begin to blow them westward into the northern Atlantic. Dust storms form primarily during summer and winter months, but in some years, for reasons that are not understood, they barely form at all.

Evan decided to explore the correlations between dust and hurricane activity after his colleague and co-author Christopher Velden and others suggested that dust storms moving over the tropical North Atlantic might be able to suppress the development of hurricanes. The researchers say that this makes sense, because dry, dust-ridden layers of air probably help to "dampen" brewing hurricanes, which need heat and moisture to fuel them. That effect, Velden adds, could also mean that dust storms have the potential to shift a hurricane's direction further to the west, which means it would have a higher chance of hitting the United States and Caribbean islands.

While the current research does not establish that dust storms directly influence hurricanes, it does provide compelling evidence that the two phenomena are linked in some way. "What we don't know is whether the dust affects the hurricanes directly, or whether both [dust and hurricanes] are responding to the same large scale atmospheric changes around the tropical Atlantic," says Foley. "That's what future research needs to find out."

The study was funded by the National Oceanic and Atmospheric Administration.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>