Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas bubbling from melting permafrost feeds climate warming

11.09.2006
FSU scientist co-authors study of Siberian thaw lakes that appears in Sept. 7 Nature

A study co-authored by a Florida State University scientist and published in the Sept. 7 issue of the journal Nature has found that as the permafrost melts in North Siberia due to climate change, carbon sequestered and buried there since the Pleistocene era is bubbling up to the surface of Siberian thaw lakes and into the atmosphere as methane, a greenhouse gas 20 times more potent than carbon dioxide.

In turn, that bubbling methane held captive as carbon under the permafrost for more than 40,000 years is accelerating global warming by heating the Earth even more --- exacerbating the entire cycle. The ominous implications of the process grow as the permafrost decomposes further and the resulting lakes continue to expand, according to FSU oceanography Professor Jeff Chanton and study co-authors at the University of Alaska-Fairbanks.

"This is not good for the quality of human life on Earth," Chanton said.

The researchers devised a novel method of measuring ebullition (bubbling) to more accurately quantify the methane emissions from two Siberian thaw lakes and in so doing, revealed the world's northern wetlands as a much larger source of methane release into the atmosphere than previously believed. The magnitude of their findings has increased estimates of such emissions by 10 to 63 percent.

Understanding the contribution of North Siberia thaw lakes to global atmospheric methane is critical, explains the paper that appears in this week's Nature, because the concentration of that potent greenhouse is highest at that latitude, has risen sharply in recent decades and exhibits a significant seasonal jump at those high northern latitudes.

Chanton points to the thawing permafrost along the margins of the thaw lakes -- which comprise 90 percent of the lakes in the Russian permafrost zone -- as the primary source of methane released in the region. During the yearlong study, he performed the isotopic analysis and interpretation to determine the methane's age and origin and assisted with measurements of the methane bubbles' composition to shed light on the mode of gas transport.

"My fellow researchers and I estimate that an expansion of these thaw lakes between 1974 and 2000, a period of regional warming, increased methane emissions by 58 percent there," said Chanton. "Because the methane now emitted in our study region dates to the Pleistocene age, it's clear that the process, described by scientists as 'positive feedback to global warming,' has led to the release of old carbon stocks once stored in the permafrost."

Jeff Chanton | EurekAlert!
Further information:
http://www.fsu.com

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>