Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds: round-the-clock diagnosis

04.09.2006
A unique automated information system has been developed by specialists of the Scientific and Research Center for Space Hydrometeorology “PLANETA”. The system is intended for the round the clock tracking of weather in Russia. Speaking more strictly, the system is to monitor meteorological parameters of atmospheric phenomena and cloudiness over the entire territory of Russia up to latitude 68-74 North, the monitoring being done in exceptional detail.

The system based on a number of Russian patents was devised and implemented by a group of researchers and inventors under the guidance of Mikhail Bukharov, Ph. D. (Physical and Mathematical Sciences). The system enables to recognize in the online mode (judging by the information from geostationary satellites) the regions where cumulo-nimbus cloudiness, heavy showers and hail in the clouds are most likely, and to assess precipitation phase, its average and maximum intensity, altitude of the upper bound of clouds, maximum speed of vertical ascending motion in cloudiness and other meteorological parameters. The system does that all automatically and very minutely – every quarter of an hour to within 0.1 degrees (latitude- and longitudewise). The system is called AIS “Meteo-ISZ”.

It should be noted that there is no additional measurement instrumentation in the system. To solve the task, the authors used measurements of intensity of outgoing thermal radiation of the earth surface, the measurements being constantly taken by radiometers in the infrared band from the Meteosat-8, Meteosat-7, Meteosat-5 and MTSAT-1R geostationary satellites. All necessary basic data is available to multiple services all over the world – however, nobody has managed so far to “pull out” so much useful information from this data.

However, the authors do not expatiate on the way they managed to do that. Which particular parameters out of measurable ones are necessary, what calculations are to be performed with them later are the know-how area, the secret that the researchers do not disclose to journalists or do not reveal to full extent even to their meteorologist colleagues. The point is that by measuring the air temperature at the cloud upper bound from satellites and by assessing the air temperature and moisture in the atmosphere bottom layer as predicted, as well as some other parameters, the authors learnt to get a lot of interesting information about the cloud. Figuratively speaking, they learned to diagnose the cloud. That is – to recognize in it the presence of thunderstorms, hail (and the size of hailstones to be expected from this cloud), snowfalls, heavy showers, rain and to assess the most probable average and maximum precipitation intensity. Or they diagnose that the cloud is quite safe – the utmost it can do is to hide the Sun.

The new system possesses two fundamental distinctions from all systems applicable so far. On the one hand, these are the methodology and respective software, which enable recognition of a wider range of atmospheric phenomena, than it was earlier, and the recognition is more precise. By the way, the most informative and precise system of the previous generation was developed not long ago by the same authors. But the new system possesses even more capabilities. Besides other things, the system utilizes the data obtained not from polar orbiting satellites, as it was previously, but form geostationary satellites. Due to that, there is an opportunity to monitor cloudiness and to measure its parameters not once in two hours as previously, but practically in the online mode, every 15 minutes.

As a result, it is possible to create with the help of the AIS “Meteo-ISZ” system on-line maps of meteorological parameters of atmospheric phenomena in cloudiness over the territory of Russia. By the way, this particular system was used by respective services during the Summit that took place this summer in St. Petersburg. Certainly, the system is unable to ‘order’ the weather, but it did provide flight operations officers in the Pulkovo airport with the fullest possible information . And the system never made a mistake.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>