Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun Shield: Report Shows Signs of Recovery in Atmospheric Ozone that Protects Earth from Ultraviolet Radiation

31.08.2006
Concentrations of atmospheric ozone -- which protects Earth from the sun’s ultraviolet radiation -- are showing signs of recovery in the most important regions of the stratosphere above the mid-latitudes in both the Northern and Southern hemispheres, a new study shows.

Researchers attribute the improvement to both a reduction in ozone-depleting chemicals phased out by the global Montreal Protocol treaty and its amendments and to changes in atmospheric transport dynamics. The study, funded by NASA, is the first to document a difference among stratospheric regions in ozone-level improvement and to establish a cause-and-effect relationship based on direct measurements by multiple satellite and ground-based, ozone-monitoring systems.

“We do think we’re on the road to recovery of stratospheric ozone, but what we don’t know is exactly how that recovery will happen,” said Derek Cunnold, a professor of earth and atmospheric sciences at the Georgia Institute of Technology. “Many in the scientific community think it will be at least 50 years before ozone levels return to the pre-1980 levels when ozone began to decline.”

The research results will be published Sept. 9, 2006 in the American Geophysical Union’s Journal of Geophysical Research—Atmospheres. Georgia Tech research scientist Eun-Su Yang led the study in close collaboration with Cunnold, Ross Salawitch of NASA's Jet Propulsion Laboratory at the California Institute of Technology, M. Patrick McCormick and James Russell III of Hampton University, Joseph Zawodny of NASA Langley Research Center, Samuel Oltmans of the NOAA Earth System Research Laboratory and Professor Mike Newchurch at the University of Alabama in Huntsville.

The study’s data indicate that atmospheric ozone has stopped decreasing in one region and is actually increasing in the other of the two most important lower regions of the stratosphere.

Scientists attribute the stabilization of ozone levels in the past decade in the 11- to 15-mile (18- to 25-kilometer) altitude region to the Montreal Protocol, enacted in 1987, and its amendments. The treaty phased out the use of ozone-depleting chemicals, including chlorofluorocarbons (CFCs) emitted from such sources as spray-can propellants, refrigerator coolants and foam insulation.

In the 7- to 11-mile (11- to 18-kilometer) region, the researchers link a slight increase in ozone to changes in atmospheric transport – perhaps caused by natural variability or human-induced climate warming – rather than atmospheric chemistry. The changes in this altitude range – below the region where ozone-depleting gases derived from human activity are thought to cause ozone depletion – contribute about half of the overall-measured improvement, researchers said.

“There is now widespread agreement in the scientific community that ozone is leveling off in the 18- to 25-kilometer region of the stratosphere because of the Montreal Protocol,” Cunnold said. “And we believe there is some tendency toward an increase in ozone in this region, though further study is needed to be certain.

“In the 11- to 18-kilometer region, ozone is definitely increasing because of changes in atmospheric dynamics and transport not related to the Montreal Protocol,” he added. “But we don’t know the long-term effect this change will have in this region.”

Other recent studies complement these new findings. Among them are a study published in 2003 in the Journal of Geophysical Research, which reported a slowdown in the ozone depletion rate in the upper stratosphere at about 22 to 28 miles altitude (35 to 45 kilometers). Newchurch at the University of Alabama in Huntsville led this study in collaboration with: Cunnold, his former Ph.D. advisor; Yang, his former Ph.D. student; and other prominent scientists. Newchurch is also an author on the current paper.

More recently, a study published in the journal Nature on May 3, 2006 indicated a stabilization and slight increase in the total-column stratospheric ozone in the past decade. This work, led by Betsy Weatherhead at the University of Colorado at Boulder, relied on satellite and ground-based ozone data used in 14 modeling studies done by researchers around the world. She and her colleagues also attributed the changes to the Montreal Protocol, but could not separate treaty-related changes from transport-related changes because of limited information available on ozone variations by height.

In the current study, Yang, Cunnold and their co-authors reached their conclusions based on satellite and ground-based atmospheric ozone measurements. They analyzed a tremendous amount of data from three extremely accurate NASA satellite’s instruments (SAGE I and II and HALOE) that began collecting data in 1979 and continued until 2005, with the exception of a three-year period in the early 1980s. Ground-based ozone measurements taken by NASA and NOAA from 1979 to 2005 and balloons provided essential complementary data for the study, Yang said. The satellites and the balloons measured ozone levels by atmospheric region. The ground-based data recorded measurements for the total ozone column.

“The ground-based measurements were especially important for the lower atmosphere because satellites can have difficulty in sensing the lowest regions,” Yang said.

Salawitch, a senior research scientist at NASA’s Jet Propulsion Laboratory, noted: “Our study provides a quantitative measure of a key fingerprint that is lacking in earlier studies -- the response of the ozone layer as function of height. We reconcile the height-dependent response with observations from other instruments that record variations in total-column ozone."

To accurately attribute the ozone level changes to the Montreal Protocol, researchers had to account for long- and short-term natural fluctuations in ozone concentration, Cunnold noted. One such fluctuation is an 11-year solar cycle, and another is a two-year oscillation that occurs in the tropics, but affects ozone in other latitudes because of atmospheric transport. Despite the natural fluctuations, Yang, Cunnold and their co-authors are very confident in the conclusions they reached from the data they analyzed.

“We know from the study we’ve just published that the Montreal Protocol -- the first major global agreement related to atmospheric change -- is working,” Cunnold said.

A new NASA satellite called Aura is continuing to measure ozone in various regions of the stratosphere, and these same researchers are involved in the ongoing study of the ozone layer using the satellite’s data.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu
http://www.gtresearchnews.gatech.edu/newsrelease/atmospheric-ozone.htm

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>