Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sulfur signature changes thoughts on atmospheric oxygen

25.08.2006
Ancient sediments that once resided on a lake bed and the ocean floor show sulfur isotope ratios unlike those found in other samples from the same time, calling into question accepted ideas about when the Earth's atmosphere began to contain oxygen, according to researchers from the U.S., Canada and Japan.

"The popular model is that there was little oxygen in the Earth's atmosphere before about 2.4 billion years ago," says Dr. Hiroshi Ohmoto, professor of geochemistry and director, Penn State Astrobiology Research Center. "Scientists use the ratio of the various sulfur isotopes as their strongest evidence for atmospheric oxygen."

All isotopes of sulfur behave the same chemically but have slightly different masses. Sulfur has four isotopes. About six years ago, researchers began measuring the abundance of these isotopes and determined their ratios in the natural world. These ratios are called mass dependent isotope fractionation and are the way sulfur fractionates today.

But rocks dating before 2.4 billion years ago have abnormal ratios, or exhibit mass independent fractionation. Generally, scientists attributed this abnormal fractionation to atmospheric chemical reactions. The reaction thought to occur before 2.4 billion years ago is that sulfur dioxide produced by volcanos is separated into native sulfur and sulfuric acids by ultra violet light. Because ozone forms an ultra violet impenetrable shield around the Earth, this reaction could not occur if ozone existed. Ozone is a common component of our atmosphere and is composed of three atoms of oxygen. If the atmosphere has no ozone, it is assumed the atmosphere has no oxygen.

Ohmoto, working with Dr. Yumiko Watanabe, research associate, Penn State; Dr. Hiroaki Ikemi, former Penn State post doctoral fellow; and Dr. Simon R. Poulson, former Penn State doctoral student now a professor at University of Nevada, and Dr. Bruce E. Taylor, Geological Survey of Canada, report in today's (Aug. 24) issue of Nature the isotopic, mineralogical and geochemical results of drilling cores recovered by the Archaean Biosphere Drilling Project in the Pilbara Craton, Pilbara, Australia. ABDP is an international project funded largely by the NASA Astrobiology Institute, the Japanese Ministry of Education and Science and the Geological Survey of Western Australia.

The two core segments represent one of the oldest lake sediments -- 2.76 billion years old -- and one of the oldest marine shale sediments -- 2.92 billion years old. Surprisingly, both samples' sulfur isotope ratios fall in the mass-dependent fractionation range and do not show the signal of an oxygenless atmosphere.

"We analyzed the sulfur composition and could not find the abnormal sulfur isotope ratio," said Ohmoto. "This is the first time that sediment that old was found to contain no abnormal sulfur isotope ratio."

One possible explanation is that perhaps oxygen levels during that time period fluctuated greatly creating a "yo yo" atmosphere: Going from oxygenless before 3 billion years ago to oxygenated between 3 billion and 2.75 billion years ago and then back to oxygenless from 2.75 billion to 2.4 billion years ago. The researchers suggest that future investigation of different geologic formation could indicate that oxygen fluctuation was even more frequent.

Another explanation could be that the atmosphere contained oxygen as early as 3.8 billion years ago and that mass independent isotope ratios of sulfur occurred because of violent volcanic eruptions and enormous amounts of sulfur dioxide released into the atmosphere. Investigation of ash sediments from recent Mt. Pinatubo eruptions and other major volcanic events show a signature of mass independent isotope ratios of sulfur, while sediment from minor eruption does not.

The photochemical reaction of volcanic sulfur dioxide may not be the only method of creating a mass independent fractionation of sulfur. Reactions between sulfate-rich seawater and organic material in the sediment during the formation of sedimentary rock layers might produce sulfur with mass independent fractionation. If so, the commonly believed linkage between the abnormal sulfur isotope ratios in sediments and an oxygen-free atmosphere must be reevaluated.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu
http://nai.nasa.gov
http://psarc.geosc.psu.edu/

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>