Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD's Supercomputers Cast Light on Cloudy Puzzle of Global Weather

02.08.2006
Record heat waves, exceptionally powerful hurricanes, destructive tsunamis, and melting icecaps have many discussing the weather, but can anybody do anything about it?

The first step towards any solution is understanding the problem, and that’s where the San Diego Supercomputer Center (SDSC) – in separate collaborations with the Lawrence Livermore National Laboratory and Colorado State University – applies its heavy-duty number-crunching expertise.

With both Livermore Lab and Colorado State – recent recipient of a $19 million National Science Foundation (NSF) grant to establish a Science and Technology Center – SDSC is working to thoroughly describe and model the role of clouds and other atmospheric phenomena, with the eventual goal of accurate worldwide forecasts.

SDSC, an organized research unit of the University of California, San Diego, has partnered with Livermore since 2005 on an advanced scientific data-management project dedicated to both global climate modeling and cosmology simulations of the early universe. Tim Barnett, of UC San Diego’s Scripps Institution of Oceanography, leads the climate-modeling effort; Michael Norman leads the cosmological research at UC San Diego.

“Our work with the Livermore Lab uses global climate modeling to determine the impact of climate changes on water supply,” said Barnett. “We’ll answer the question: Can we detect a global warming signal in main hydrological features of the Western United States? This will involve making runs of global climate and downscaling models that will be unprecedented in scope.”

The collaboration with Colorado State was announced in July, with UC San Diego’s John Helly, laboratory director for earth and environmental sciences at SDSC, named co-principal investigator. That work will also be, in many ways, unprecedented.

“The characterization of clouds is a major limitation in current climate models,” Helly said, discussing the urgency of such research. “With this award, the Center for Meso-scale-modeling of Atmospheric Processes is provided the opportunity to advance the accuracy and precision of atmospheric models. SDSC will play a key role in making this problem computationally tractable, as well as in disseminating the voluminous, high-resolution model results to the research and education community.”

SDSC brings powerful tools to both partnerships. Available resources
include production data-management systems as well as development environments for creating and testing next-generation software. The production-data environment includes supercomputers, archival storage systems, high-performance disk arrays, commodity-based disk systems, data-management platforms, database platforms and advanced visualization systems. SDSC capabilities include peak 15-teraflops-capable systems, a 18-petabyte tape archive, and 1.5 petabyte on-line high-performance data-handling systems that can move data at rates from 1 to 7 gigabytes a second.

The center is a node on the Teragrid, and its hardware and software systems support the Scripps Institution of Oceanography’s SIOExplorer digital library, the Real-Time Observatories Network data grid, the NSF’s National Science Digital Library persistent archive, the Joint Center for Structural Genomics data grid, the Alliance for Cell Signaling digital library, the UC San Diego Libraries’ ArtStor image collection, and the Southern California Earthquake Center digital library, among other institutions and resources.

Can those massive computing abilities make enough sense of the unpredictable atmosphere to enable timely, and life-saving, forecasts? Scientists admit that even with today’s leading-edge resources, simulations still cannot capture the full complexity of the global-scale patterns of the weather.

But Colorado State’s David Randall, professor of atmospheric science and director of the newly funded NSF Science and Technology Center, believes his institution and the SDSC have developed a prototype model with significant promise.

“Our model allows scientists to take a two-dimensional model of a collection of clouds and apply the behavior of those clouds to each of the thousands of ‘grid columns’ of a global atmospheric model,” he said. “The project will make it possible to produce more robust simulations of both next week’s weather and future climate change.”

Fran Berman, director of the SDSC, sees great benefits to the partnerships with Livermore and Colorado State. "To understand a force as dynamic and complex as the Earth's atmosphere -- or something as ephemeral as a cloud -- today involves simulations with massive computing resources and data collections. SDSC is delighted to participate in the new Science and Technology Center with our partners, and we look forward to the new discoveries that will ensue from this collaboration."

Paul K. Mueller | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>