Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slippery stretching explains ocean floor formation

28.07.2006
For the first time, scientists have found regions of the earth’s crust which are stretching apart to form new sea floor; their findings are published in Nature.

Most new ocean floor is made when undersea volcanic activity splits the crust and molten rock fills the gaps. However some new ocean floor develops when rock stretches along gently inclined tectonic faults called detachment faults.

The new research suggests the significance of this stretching process as a way of creating new sea floor has been underestimated. No active examples of these detachment faults had been seen - until now.

Co-author Prof Joe Cann, from the University of Leeds said: “Detachment faults appear to break one of the most fundamental rules of geology. After all of the theorising about them, trying to explain how they might exist, it is immensely exciting to discover active faults emerging from the sea floor.”

Detachment faults are characterised by their curved surfaces, like corrugated iron roofs, and by swarms of tiny earthquakes. Because the distinctive shape of the faults as they emerge, it was possible to show that along 80 kilometres of the Mid-Atlantic Ridge all of the new crust along one side was being formed through a chain of linked detachment faults each at a different stage of evolution, which was highly unexpected. After a while, each fault becomes inactive, and is replaced by a newly-emerging fault.

Co-author Deborah Smith, of Woods Hole Oceanographic Institution, said: “In our area, detachment faulting is the most important way in which new ocean floor is constructed. The initial signs are that detachment faulting is far commoner along many hundreds of kilometres of the Mid-Atlantic Ridge than anyone had supposed before. These observations shed a new light on the evolution of the ocean floor.”

About 3 square kilometres of new ocean floor is created around the world every year. With sea floor comprising two thirds of the Earth’s crust, this new work is invaluable in helping us understand how the Earth’s surface is formed.

Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge by Deborah Smith of Woods Hole Oceanographic Institution, USA, Johnson Cann of the University of Leeds, UK and Javier Escartin of Marine Geosciences Group, France, was published yesterday (27 July) in Nature.

Vanessa Bridge | alfa
Further information:
http://www.leeds.ac.uk

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>