Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster Tsunami Warnings Possible With Help of New GPS Software

29.06.2006
Scientists have demonstrated that the Global Positioning System (GPS), using newly developed data processing software, can determine within minutes whether an earthquake is powerful enough to generate an ocean-wide tsunami. The technology, developed by NASA's Jet Propulsion Laboratory, can be used to provide faster tsunami warnings.

A team led by Geoffrey Blewitt of the Nevada Bureau of Mines and Geology and the University of Nevada, Reno, demonstrated that a large quake's true size and potential to generate a major ocean-wide tsunami can be determined within 15 minutes using GPS data, much faster than is possible with current methods. They report their findings this month in Geophysical Research Letters, published by the American Geophysical Union.

"Tsunami warning is a race against time," says Seth Stein, of Northwestern University in Evanston, Illinois, a co-author of the paper. "Tsunamis travel at jet speed, so warning centers must accurately decide, within minutes, whether to issue alerts. This has to be done fast enough for the warning to be distributed to authorities in impacted areas so they can implement response plans. Together with seismometer and ocean buoy data, GPS adds another tool that can improve future tsunami danger assessments."

"We'll always need seismology as the first level of alert for large earthquakes, and we'll need ocean buoys to actually sense the tsunami waves," added Blewitt. "The advantage of including GPS in warning systems is that it quickly tells how much the ocean floor moved, and that information can directly set tsunami models into motion."

The new method, called GPS displacement, is based upon measuring precisely when radio signals from GPS satellites arrive at ground stations located within a few thousand kilometers [miles] of a quake. From these data, scientists can calculate how far the stations moved because of the quake, and then derive the quake's true size, called its "moment magnitude." This magnitude is directly related to a quake's tsunami-generation potential.

Current scientific methods cannot quickly determine moment magnitude for very large earthquakes, as illustrated by the magnitude 9.2-9.3 Sumatra quake of December 2004. That quake was first estimated at 8.0 using seismological techniques designed for rapid analysis. Because these techniques derive estimates from the first seismic waves to arrive, they tend to underestimate earthquakes larger than about 8.5, the minimal size that can generate major ocean-wide tsunamis. The initial estimate of 8.0 was the primary reason warning centers in the Pacific significantly underestimated the earthquake's tsunami potential.

The potential of GPS to contribute to tsunami warning became apparent after the Sumatra earthquake, when GPS measurements showed it moved the ground permanently more than one centimeter [0.4 inches] as far away as India, more than 2,000 kilometers [1,200 miles] away from the epicenter. "With signals like that, an earthquake this huge can't hide," said Blewitt. "We hypothesized that if GPS data could be analyzed rapidly and accurately, they would quickly indicate the earthquake's true size and tsunami potential."

To test the feasibility of their approach, the scientists used JPL's satellite positioning data processing software to analyze data from 38 GPS stations located at varying distances from the Sumatra quake's epicenter. The software pinpoints a station's precise location to within seven millimeters [0.3 inches]. Only data that were available within 15 minutes of the earthquake were used. Results indicated that most of the permanent ground displacements occurred within a few minutes of the arrival of the first seismic waves. Their analysis inferred an earthquake model and a moment magnitude of 9.0, very near the earthquake's final calculated size.

The GPS software technology described in this report was funded by NASA.

Harvey Leifert | American Geophysical Union
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>