Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boston university researchers develop new model of ice volume change based on Earth's orbit

26.06.2006
Model suggests Antarctic ice sheets more dynamic than previously believed

Through dated geological records scientists have known for decades that variations in the Earth's orbit around the sun – subtle changes in the distance between the two – control ice ages. But, for the first 2 million years of the Northern Hemisphere Ice Age there has always been a mismatch between the timing of ice sheet changes and the Earth's orbital parameters.

A new model of ice volume change developed by Boston University researchers Maureen Raymo and Lorraine Lisiecki proposes a reason for this discrepancy. Like other models, it is consistent with traditional Milankovitch theory – which holds that the three cyclical changes in the Earth's orbit around the Sun (obliquity, precession, and eccentricity) influence the severity of seasons and high latitude temperatures over time. However, the new model differs from earlier ones in that it allows for a much more dynamic Antarctic ice sheet.

According to the researchers, from 3 million years ago to about 0.8 million years ago, Northern Hemisphere ice volume appears to have varied mostly with the 41,000 year period of obliquity – the periodic shift in the direction or tilt of Earth's axis. However, summer insolation (incoming solar radiation), which is widely believed to be the major influence on high-latitude climate and ice volume change, is typically dominated by the 23,000 year precessional period – the slow "wobble" of the Earth on its axis.

"Because summer insolation is controlled by precession, and summer heating controls ice sheet mass balance, it is difficult to understand why the ice volume record is dominated by the obliquity frequency," said Dr. Raymo. "It's not a complete mismatch, but the precession frequency we think should be strong in geological records is not."

The new model proposes that during this time, ice volume changes occurred in both the Northern Hemisphere and Antarctica, each controlled by different amounts of local summer insolation paced by precession.

"The reason the frequency is not observable in records is because ice volume change occurred at both poles, but out of phase with each other. When ice was growing in the Northern Hemisphere, it was melting in the Southern," said Raymo.

The team believes scientists have been operating under the assumption that Antarctica has been exceptionally stable for 3 million years and very difficult to change climatically. "We don't tend to think of ice volume in that region as varying significantly, even on geologic time scales," said Raymo. "However, only a modest change in Antarctic ice mass is required to "cancel" a much larger Northern ice volume signal."

Records used to measure the ice volume, such as sea levels, integrate the whole world. According to Raymo, the new model demonstrates that while the precession frequency is actually strong in ice volume changes at each pole, in geologic records Northern and Southern hemisphere ice volume trends act to cancel each other out at this frequency.

The paper, which was published online today and will appear in an upcoming issue of the journal Science, proposes that the Antarctic ice sheet is more dynamic and far more capable of change than previously believed.

"If our theory holds true, it is a cause for concern with regard to climate changes not associated with orbital patterns as well," said Raymo.

Kira Edler | EurekAlert!
Further information:
http://www.bu.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>