Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken seesaw warms North

13.12.2001


Wetter winters could be forecast months ahead.
© ImageSource


American Geophysical Society Meeting, San Francisco, December 2001

Pressure system secrets could help long range forecasts.


The rise in levels of greenhouse gases has halted an oscillation of air pressures over the Arctic, bringing warmer, wetter winters to Northern Europe, Siberia and Alaska. The shift could get worse with increasing CO2 emissions, delegates heard this week at the American Geophysical Union meeting in San Francisco, California.



The trend is unlikely to have a natural cause, Nathan Gillett, a climate modeller at the University of Oxford in the UK, told the conference. "It is consistent with most climate models’ response to greenhouse gases," he added.

But the cloudy winter skies over Europe may have a silver lining. Identifying the effects of the Arctic oscillation (AO) could one day enable researchers to forecast aspects of northern hemisphere weather months, even seasons ahead of time.

Like El Nino, the AO is a variation in atmospheric pressure. It seesaws between Iceland at one end and Spain and Portugal at the other. The AO’s negative phase brings higher-than-normal pressure to the polar region and lower pressure to Eurasia and North America. The positive phase brings the opposite: warmer, wetter weather to northern regions and dryer conditions to lower latitudes.

Scientists used to think that the AO was completely random. But in 1995 James Hurrell of the National Center for Atmospheric Research in Boulder, Colorado, showed that it actually follows a 10-year cycle and that since the 1980s the seesaw has been stuck in its positive phase1. "This has an impact on winter surface temperatures," says Hurrell.

Recent estimates suggest that the skewed AO may account for half of the warmer winter episodes and rainfall in northern Atlantic areas such as Scotland.

Working with the computer models used to forecast Britain’s weather, Gillett calculated the impact of a doubling of atmospheric CO2 levels (expected to happen by about 2040) on the AO’s intensity. He found that the additional CO2 would keep the AO in its positive phase and strengthen its effects.

Most experts agree that the skewed AO is probably caused by greenhouse gases, according to climatologist John Wallace at the University of Washington in Seattle. Although he cautions that climate models are never perfect.

High cycle

What happens to the AO in the absence of man-made perturbations, on the other hand, is open to debate. One suggestion is that increasing tropical ocean temperatures cause the phenomenon. Another proposes that long-term cycles high in the stratosphere, six to thirty miles above the Earth, are driving it.

New evidence presented at the meeting by Mark Baldwin, of Northwest Research Associates in Bellevue, Washington, suggests that fluctuations in the stratosphere’s thickness are linked to the AO.

Although the effects of the stratosphere will still be amplified by an increase in greenhouse gases, the finding is otherwise good news, says Wallace, because the frequency of the waves are known. "These stratosphere waves could make 60-day forecasts possible," he says.

What’s more, longer-term fluctuations in tropical Atlantic temperature contribute to the power of stratospheric waves, so it should be possible to predict weather seasons in advance, says Wallace. "One day we might be predicting the likelihood of a certain number of cold snaps in the coming year," he says.

References

  1. Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676 - 679, (1995).

TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/011213/011213-11.html

More articles from Earth Sciences:

nachricht "Airlift" facility: TU Freiberg tests new mining technology in research and training mine
22.10.2019 | Technische Universität Bergakademie Freiberg

nachricht Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
21.10.2019 | University of British Columbia

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>