Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal fate of Earth’s oceans

11.05.2006


Scientists at The University of Manchester have uncovered the first evidence of seawater deep inside the Earth shedding new light on the fate of the planet’s oceans, according to research published in Nature (May 11, 2006).



For years geologists have debated whether seawater is subducted (absorbed) into the deep Earth or whether there is a ‘subduction barrier’ blocking its absorption.

For the first time scientists at The University of Manchester have positively identified seawater in volcanic gas samples originating from the Earth’s mantle - the region just below the crust and extending all the way down to the core – supporting the theory that seawater is subducted deep into the Earth and enabling them to test this theory further.


Professor Chris Ballentine and Dr Greg Holland of the University’s School of Earth and Atmospheric and Environmental Sciences have also revealed that up to 10% of the Earth’s oceans have been absorbed deep into the Earth since its formation.

Professor Ballentine said: “We can show that up to 10% of the Earth’s oceans have been absorbed into the planet since formation. This accounts for about half of the water in the deep earth, the remainder of which was trapped when the Earth first formed. This work, for the first time, quantifies the ‘geological water cycle’.”

Trace gases were used to identify seawater in volcanic gas samples. This was done by counting the relative number of atoms of different noble gases (Argon, Krypton and Xenon) in the samples which revealed an atomic ‘fingerprint’ matching that of seawater.

The study, funded by the Natural Environment Research Council, is also the first to establish the precise composition of the noble gases present in the Earth’s mantle. In addition to identifying seawater the noble gases have provided a cornerstone for understanding the very origin of gases and water in our planet.

Dr Holland said: “As we now know how much seawater and associated gases were added to the deep Earth, we can identify what was down there to start with much more precisely. This is absolutely critical for understanding how our planet formed and has changed over time”

Professor Ballentine added: “Our results also explain why ocean volcanoes, like Hawaii and Iceland, which come from the where the mantle meets the core, have a higher water content than ocean volcanoes that originate from shallower regions of the mantle. Previously, geologists have thought that this is because this region of the planet preferentially preserved water and gasses trapped during earth formation and it is only now ‘leaking out’. We know however that if seawater subduction is occurring, it will be carried more efficiently into the deepest parts of the earth, and that contrary to these old ideas, the water in the lavas from Hawaii and Iceland are in fact dominated by old seawater that has travelled from the surface, to the center of the earth and back again.”

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>