Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois professor to address global warming at book launching

10.05.2006


Michael Schlesinger, a professor of atmospheric sciences at the University of Illinois at Urbana-Champaign, will participate in news conferences in New York City on May 9, and Washington, D.C., on May 10, publicizing the U.S. debut of the book "Avoiding Dangerous Climate Change."

Published by Cambridge University Press, the book builds upon scientific findings presented at the "Avoiding Dangerous Climate Change" conference held in Exeter, England, in February last year. The conference was sponsored by the United Kingdom Department of Environment, Food and Rural Affairs.

The conference brought together more than 200 scientists and political leaders from 30 nations. Major themes included key vulnerabilities of the climate system and critical thresholds, socio-economic effects, and technologies to limit greenhouse-gas emissions.



Based on his talk at the conference, Schlesinger contributed a book chapter titled "Assessing the Risk of a Collapse of the Atlantic Thermohaline Circulation."

Higher temperatures caused by global warming could add fresh water to the northern North Atlantic Ocean by increasing the precipitation and by melting nearby sea ice, mountain glaciers and the Greenland ice sheet, Schlesinger said. This influx of fresh water could reduce the surface salinity and density, leading to a shutdown of the thermohaline circulation.

"We have evidence dating back to 1965 that shows a drop in salinity around the North Atlantic," Schlesinger said. "So far, the salinity change is small, but we could be standing at the brink of an abrupt and irreversible climate change."

Among the talking points Schlesinger will cover at the news conferences:

  • The observed warming during 1856-1990 was predominantly human-induced. "Using a simple climate/ocean model, we calculated the contributions to the observed changes in global-mean, near-surface temperature caused by human and volcano forcing, and putative variations in the irradiance of the sun for the years 1856-1990," Schlesinger said. "We found the human effect has steadily increased and is now the dominant external factor. Variations in solar output played only a minor role in the observed temperature change, and we found no significant contribution from volcanoes."

  • The observed melting of alpine glaciers, the Greenland and West Antarctic ice sheets, the freshening of the North Atlantic Ocean, and the slowdown of the Atlantic thermohaline circulation are the "smoking gun" of global warming. "We are seeing dangerous, human-induced climate change," Schlesinger said. "The melting of the Greenland ice sheet would raise sea level by 18 feet. Melting of the Antarctic ice sheet would raise sea level an additional 22 feet. Most coastal cities would be inundated."

  • These observed changes in climate and ongoing research have shown that human-induced warming is proceeding more quickly than anticipated. "Not only are the Greenland and Antarctica ice sheets melting much faster than models predicted, measurements show a significant freshening (influx of fresh water) of the North Atlantic Ocean and a 30 percent reduction of North Atlantic circulation within the past 50 years," Schlesinger said. "What we are seeing is very worrisome. It is now clear that we have no time to spare -- we must act immediately."

  • If the present course of increasing emissions continues, there is a high likelihood that the Atlantic thermohaline circulation will shut down during the next 200 years. The thermohaline circulation is driven by differences in seawater density, caused by temperature and salinity. Like a great conveyor belt, the circulation pattern moves warm surface water from the southern hemisphere toward the North Pole. Between Greenland and Norway, the water cools, sinks into the deep ocean, and begins flowing back to the south.

"This movement carries a tremendous amount of heat northward, and plays a vital role in maintaining the current climate," Schlesinger said. "If the thermohaline circulation shut down, the southern hemisphere would become warmer and the northern hemisphere would become colder. The heavily populated regions of eastern North America and western Europe would experience a significant shift in climate."

Two major factors affect the range of possible future temperature increases: Scientists don’t know precisely how sensitive the climate system will be to future emissions; and they don’t know exactly how much humankind will emit. People can only control one of the factors. By reducing emissions, the amount of future warming and associated impacts can be reduced.

"Recent work by five independent research teams has shown that climate sensitivity could be larger than the 4.5 degrees Celsius upper bound published by the Intergovernmental Panel on Climate Change," Schlesinger said. "In fact, climate sensitivities as high as 9 degrees Celsius are not implausible. Paralysis in near-term action to significantly reduce emissions could make mitigation nearly impossible to attain."

Two other authors and one of the book’s editors will also participate in the news conferences. The May 9 news conference will begin at noon EDT at JP Morgan-Chase corporate headquarters in Manhattan. The May 10 news conference will begin at 4 p.m. in Room 485 of the Russell Senate Office Building.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>