Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists penetrate fossil magma chamber beneath intact ocean crust -- achieving scientific ’first’

24.04.2006


PACIFIC OCEAN, approximately 800 km west of Costa Rica¡ªAn international team of scientists aboard the research drilling ship JOIDES Resolution has¡--for the first time¡--recovered black rocks known as gabbros from intact ocean crust. Supported by the Integrated Ocean Drilling Program (IODP), the scientists drilled through the volcanic rock that forms the Earth’s crust to reach a fossil magma chamber lying 1.4 kilometers beneath the seafloor.



"By sampling a complete section of the upper oceanic crust, we’ve achieved a goal scientists have pursued for over 40 years, since the days of Project MoHole," says Damon Teagle, National Oceanography Centre, University of Southampton, UK, and co-chief scientist of this drilling expedition. "Our accomplishment will ultimately help science answer the important question, ’how is new ocean crust formed?’"

Formation of ocean crust is a key process in the cycle of plate tectonics; it constantly ’repaves’ the Earth’s surface, builds mountains, and leads to earthquakes and volcanoes. Project MoHole, begun in the 1950s, aimed to drill all the way through the ocean crust, into the Earth’s mantle.


Jeffrey Alt of the University of Michigan and co-chief scientist on an earlier leg of this mission, explains that "having this sample from the deep fossil magma chamber allows us to compare its composition to the overlying lavas. It will help explain," he says, "whether ocean crust, which is about six- to seven- kilometers thick, is formed from one high-level magma chamber, or from a series of stacked magma lenses." He emphasizes that "the size and geometry of the melt lens affects not only the composition and thermal structure of the ocean crust, but also the vigor of hydrothermal circulation of seawater through the crust." Alt states that such systems lead to spectacular black-smoker vents--modern analogs of ancient copper deposits and deep-ocean oases that support exotic life.

IODP Program Director James Allan at the U.S. National Science Foundation, which co-funds IODP research with Japan, further clarifies what the expedition’s discovery represents. "These results," he says, "coming from the structural heart of Pacific crust, confirm ideas from seismologic interpretation about how fast-spreading oceanic crust is built. They refine our understanding of the relationship between seismic velocity and crustal rock composition, and open new vistas for investigating the origin of lower oceanic crust, best addressed by deeper drilling." NSF and Japan each provide a scientific drilling vessel to IODP for research teams.

Geophysical theories have long projected that oceanic magma chambers freeze to form coarse-grained, black rocks known as gabbros, commonly used for facing stones on buildings and kitchen countertops. Although gabbros have been sampled elsewhere in the oceans, where faulting and tectonic movement have brought them closer to the seafloor, this is the first time that gabbros have been recovered from intact ocean crust.

"Drilling this deep hole in the eastern Pacific is a rare opportunity to calibrate remote geophysical measurements such as seismic travel time or magnetic field with direct observations of real rocks," says geophysicist Doug Wilson, University of California, Santa Barbara. Co-chief scientist on an earlier expedition to the same drilling site, Wilson was instrumental in helping to select the site drilled. His contributed to the research mission thorough study of the ocean crust’s magnetic properties.

"Finding the right place to drill was probably key to our success," Wilson asserts. The research team identified a 15-million-year-old region of the Pacific Ocean that formed when the East Pacific Rise was spreading at a ’superfast’ rate (more than 200 millimeters per year), faster than any mid-ocean ridge on Earth today. "We planned to exploit a partially tested geophysical observation that magma chambers should be closest to the Earth’s surface, in crust formed at the fastest spreading rate. If that theory were to be correct," reasoned Wilson, "then we should only need to drill a relatively shallow hole--compared to anywhere else--to reach gabbros." Wilson and colleagues proved the theory correct.

Following three years of research and multiple trips to the site in question, the borehole that rendered the magma chamber is now more than 1,500 meters deep; it took nearly five months at sea to drill. Twenty-five hardened steel and tungsten carbide drill bits were used before the scientists’ work was complete. The rocks directly above the frozen magma chamber were extremely hard because they had been baked by the underlying magmas, much like tempered steel.

IODP scientists want to return to the site of the unearthed magma chamber to explore deeper, in hopes of finding more secrets hidden deep within the ocean’s crust.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>