Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Young Mars Most Likely to Support Life, New Mineral History Shows

24.04.2006


A Martian Mineral History
The large dark area right of center on the hemisphere view of Mars is Syrtis Major. The map shows the presence of water-bearing clay minerals identified by OMEGA data. Blue indicates small amounts and orange-red indicates large amounts.


An international team of scientists, including Brown University geologist John Mustard, has created the most comprehensive mineral record of Mars to date. Using data from the European Space Agency’s Mars Express mission, the record shows three distinct geological eras on the Red Planet, with the earliest marked by the presence of water. Results are published in Science.

Mars started out relatively wet and temperate, underwent a major climate shift, and evolved into a cold, dry place strewn with acidic rock – less than ideal conditions for supporting life.

This is the finding of an international team of scientists who have created the most comprehensive mineral history of Mars, a history closely linked to the presence of liquid water on the planet. According to the mineral record, created with Mars Express mission data and detailed in Science, Mars would only have been hospitable to life in its infancy.



“Starting about 3.5 billion years ago, conditions on Mars became increasingly dry and acidic – not a pleasant place for any form of life, even a microbe,” said John Mustard, a Brown University geologist and a primary author of the Science paper.

If any living organisms had formed on Mars, that evidence would likely be found in clay-rich rocks and soil north of the Syrtis Major volcanic plateau, in Nili Fossae and in the Marwth Vallis Regions, the team reports.

These areas make compelling targets for future lander missions, according to Mustard, a co-investigator on the Mars Express and Mars Reconnaissance Orbiter missions. In the meantime, the Compact Reconnaissance Imaging Spectrometer for Mars, or CRISM, aboard the Mars Reconnaissance Orbiter, will in September begin beaming mineralogical data on these clay-rich regions. The images will be 20 times more precise compared with those captured by Mars Express.

“I’m eager to get the CRISM data and explore the deposits found by OMEGA, as well as discover new sites and minerals,” Mustard said. “OMEGA shows that some of the most interesting sites are small – and CRISM is designed to find and characterize small deposits.”

Jean-Pierre Bibring, an astrophysicist from the University of Paris, led the team of scientists from France, Italy, Russia, Germany and the United States. The investigators pieced together the mineral history using data from Mars Express, a mission launched by the European Space Agency. An instrument aboard the spacecraft dubbed OMEGA – short for Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité – determines mineral composition from visible and infrared light reflected from the Red Planet’s surface. The team used two years worth of data from OMEGA, which has mapped more than 90 percent of the planet’s surface.

The team found three distinct geological eras on Mars:

  • The first era lasted from the birth of Mars, about 4.6 billion years ago, until about 4 billion years ago. The oldest rock – exposed by erosion, impact or faulting – shows the presence of clay minerals. These minerals, such as chamosite and nontronite, need abundant water, moderate temperatures and low acidity to form.

  • The second era lasted from between 4 and 3.5 billion years ago. Minerals made during this era, such as gypsum and grey hematite, were found in Meridiani and in Valles Marineris. These rocks, traced by sulfates, mark a dramatic shift from a moist and alkaline environment to a dry, acidic one. The shift, the team concludes, was likely caused by massive volcanic eruptions that spewed sulfur into the atmosphere, which then rained back down on the planet’s surface.

  • The third era began between 3.2 billion and 3.5 billion years ago and continues to the present. Minerals during this period were not formed with, or altered by, liquid water. These iron-rich minerals, dominated by ferric oxides, were found across most of the planet and reflect the cold, dry conditions that persist on Mars.

The team’s analysis led them to draw an intriguing conclusion: Liquid water didn’t make the Red Planet red. Instead, the team states, Mars most likely gets its glow from tiny grains of red hematite or possibly maghemite, both riddled with iron.

The Centre National d’Etudes Spatiales, Agenzia Spatiale Italiana and the Russian Space Agency funded the OMEGA instrument. In the United States, NASA supported OMEGA data analysis.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>