Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperatures, Not Hotels, Likely Alter Niagara Falls’ Mist

18.04.2006


What’s up with the mist?



When the Niagara Parks Commission posed that question back in 2004, the concern was that high-rise hotels on the Canadian side of Niagara Falls were contributing to the creation of more mist, obscuring the very view that millions of tourists flock there every year to see.

The suspicion was that new high-rise buildings were altering airflow patterns, contributing to a higher, thicker mist plume.


Consultants conducted wind tunnel experiments that seemed to confirm that mist levels were enhanced by the tall buildings around the falls, a report that circulated in the Canadian news media.

Now University at Buffalo geologists have determined that the high-rise hotels are probably not to blame.

"According to our findings, it is unlikely that the buildings at the falls enhance the mist," said Marcus Bursik, Ph.D., professor in the Department of Geology in the UB College of Arts and Sciences, who led the study with several students who were investigating the plume for their graduate-degree projects. "Rather, our data show that it’s air and water temperature that control the amount of mist.

"It turns out that the bigger the temperature difference between the air and the water, the higher and more substantial is the mist plume and the thicker is the mist at the Falls," he continued.

Bursik, a volcanologist who has studied atmospheric plumes at volcanoes, noted that plumes, regardless of their origin, have common features.

He was motivated to study the Niagara Falls plume back in 2002.

"I started wondering why the plume rose to different heights on different days," said Bursik, who often can see the plume from his building on the University at Buffalo’s North (Amherst) Campus about 20 miles away.

According to the data the UB researchers gathered, the plume is highest during times of the year when the water temperature is higher than the air temperature, which typically occurs during fall and winter.

Bursik explained that in late autumn, even when the air temperature can fall to about 40 or 30 degrees Fahrenheit, the water still remains quite warm, as high as 60 degrees Fahrenheit, conditions that are ideal for a large, high plume.

During the winter, he continued, the temperature of the water remains at 32 degrees Fahrenheit because it is constantly flowing, but the air temperature will plunge by twenty or thirty degrees or more.

"Those temperature differences create more mist flow and a higher plume," said Bursik.

The perception that there have been more misty days in recent years may just be related to temperature trends, he noted.

Using a portable weather station adapted for a backpack, a UB student measured windspeed at the falls to establish airflow and windflow patterns.

Calculations also were made using ambient atmospheric temperature and river-water temperature to make a prediction for the height of the mist plume.

Actual plume height then was measured on different days using the Skylon Tower as a reference point.

"The predicted and measured plume heights matched well, consistent with the notion that the plume is just higher and thicker when the temperature difference is bigger," said Bursik.

The researchers will present their findings at UB’s annual Environment and Society Institute Colloquium on April 21. Findings also were presented during the 36th Binghamton Geomorphology Symposium held at UB last October.

The research was supported by seed funding from UB.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>