Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists Create 5-Million-Year Climate Record

10.04.2006


Brown University geologists have created the longest continuous record of ocean surface temperatures, dating back 5 million years. The record shows slow, steady cooling in the eastern equatorial Pacific, a finding that challenges the notion that the Ice Ages alone sparked a global cooling trend. Results are published in Science.

Using chemical clues mined from ocean mud, Brown University researchers have generated the longest continuous record of ocean temperatures on Earth.

The 5-million-year record is a history of temperatures in the eastern equatorial Pacific, or EEP, located off the coast of South America. The area is an anomaly – a huge swath of cool water in the tropics – that plays an important role in global climate. In the EEP, trade winds pull nutrient-rich cold water to the surface, which makes for fertile fisheries off the coasts of Peru, Chile and Ecuador. The interplay of wind and water can also fuel El Niño events, a large-scale warming in the EEP that slows the upwelling of cold water and forces changes in weather, such as droughts or floods, far from the tropical Pacific.



In the EEP, the Brown geology team found that surface temperatures were 27° C 5 million years ago. Surface temperatures are 23° C today. In between, they found a pattern of steady cooling – roughly one degree Celsius every million years.

This finding, published in Science, contradicts the long-standing notion that rapid glacier growth in the high northern latitudes about 3 million years ago alone set off dramatic cooling of the global climate. The finding shows instead that glaciation was part of a long-term cooling trend.

The climate record suggests that ocean regions near Antarctica were the main driver of EEP cooling by continuously pumping cold water into the area. This finding was bolstered by additional evidence that glacial cycles affected the tropical Pacific long before the advent of large ice sheets in the Northern Hemisphere.

“The Southern Hemisphere, not the Northern Hemisphere, more likely had a stronger effect on temperature and productivity in the eastern Pacific,” said Kira Lawrence, a graduate student in the Department of Geological Sciences and the lead author of the Science paper. “We may need to refocus where we look to understand the evolution of climate over the past 5 million years.”

Lawrence, post-doctoral research fellow Zhonghui Liu, and Professor Tim Herbert used sediment cores pulled from hundreds of meters below the surface of the Pacific by a ship operated by the Ocean Drilling Program, an international research organization. Moving down the cores, collecting small samples of gray mud, scientists can go back in time. The end result: Thousands of glass vials filled with climate history.

But how do you extract history from mud? The answer was found in tiny marine fossils.

To date the sediments, the geologists analyzed fossils and traces of oxygen trapped in the shells of microscopic ocean organisms. To get temperatures, the Brown team looked to algae, infinitesimal surface-dwellers that produce fatty compounds called alkenones. Algae crank out two kinds of alkenones depending on the surrounding water temperature. When water is cooler, algae make more of one kind. When water is warmer, they produce more of another. By carefully measuring the amount of these alkenones in each sample, researchers were able to calculate past surface temperatures.

The resulting 5-million-year timeline might have a practical use. Scientists trying to predict future climate change may use the data in computer simulations that model natural climate variability as well as predict the impact of accelerated warming due to greenhouse gas emissions.

Herbert said the work has other implications for understanding climate change.

“Results from the past prove that it is possible for the EEP to exist in a kind of permanent El Niño state, which would have immense climate and biological repercussions if it were to happen again under global warming,” Herbert said. “The geological evidence also suggests that to predict warming in the EEP, the key ocean region to monitor is near Antarctica.”

The National Science Foundation and the Geological Society of America funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>