Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NSF aircraft to probe hazardous atmospheric whirlwinds

07.03.2006


Advanced plane called HIAPER makes its first science mission



Today, the nation’s most-advanced research aircraft will take flight on its first science mission. Scientists aboard will study a severe type of atmospheric turbulence that forms near mountains and endangers planes flying in the vicinity. The mission will last two months, ending on April 30, 2006.

Owned by the National Science Foundation (NSF) and operated by the National Center for Atmospheric Research (NCAR) in Boulder, Colo., the aircraft will fly over treacherous whirlwinds, known as rotors, as they form above the California Sierra Nevada range.


Called HIAPER (High-performance Instrumented Airborne Platform for Environmental Research), the plane will embark on a series of 10-hour flights that will take it from its base at Jefferson County Airport in Colorado to California’s central valley during the Terrain-Induced Rotor Experiment, or T-REX.

Rotors, which form on the lee side of high, steep mountains, have contributed to a number of aircraft accidents, but scientists know little about their structure and evolution. They are common in the Sierras because the area has the steepest topography in the continental United States. Owens Valley, where T-REX will be based, sits some 10,000 feet directly below the highest peaks of the adjacent mountains

Capable of reaching an altitude of 51,000 feet and cruising for 7,000 miles, HIAPER is ideally suited for this experiment, say atmospheric researchers.

"HIAPER’s first science campaign, on the origin and evolution of rotors, could not have been done without the long-range capabilities of such an aircraft," says Margaret Leinen, NSF assistant director for geosciences. "In addition, HIAPER’s communications and data capabilities will allow the entire T-REX science team to participate in the experiment, whether or not they are actually on board."

An international research team of about 60 scientists, led by Vanda Grubisic of the Desert Research Institute in Reno, Nev., will study the rotors from several perspectives. On the ground, researchers will probe rotors with radars, lidars (laser-based radars), automated weather stations, wind profilers, and balloons.

Researchers aboard HIAPER will observe rotors from above and release instruments called dropsondes into the most turbulent areas. Two other aircraft from Great Britain and the University of Wyoming, flying at lower elevations, will gather data and aim cloud radars into the rotors.

"After more than a decade of planning and several years of engineering studies, NSF’s HIAPER is ready for its first full scale research project," says Jim Huning, NSF program director for the airborne platform. "The project will help forecasters predict when and where rotors are most likely to occur and the degree of their intensity, as well as the nature of the mountain waves that crest high above rotors and cause strong turbulence. Without information gathered on HIAPER flights, this understanding would not be possible."

Rotors have intrigued scientists since the 19th century, "and frustrated pilots since they started flying near mountains," Grubisic says. "With the newest advances in airborne measurements, remote sensing, and atmospheric modeling, we are can now tackle basic scientific questions on the evolution and predictability of rotors, and of breaking mountain waves. The results will improve aviation safety near mountainous terrain."

Scientists will also study the pollutants and particles that are moved around by air waves above and near mountains, and that affect climate and air quality. By flying as high as the lower stratosphere, HIAPER will enable researchers to gather data about the distribution of chemicals high in the atmosphere after mountain waves rearrange the chemicals.

"From a scientific point of view, this will be a fantastic part of the atmosphere to be flying around in because of the turbulence and the movements of air masses," says T-REX scientist Jorgen Jensen of NCAR. "With our advanced instrument payload and our flight paths, the amount of data we will collect will be unprecedented for describing airflow over mountains."

Results from this project "should enable models to be more effective in forecasting turbulent conditions associated with mountain waves," says scientist Richard Dirks of NCAR.

The T-REX team will include veteran NCAR researcher Joachim Kuettner, who first explored the newly discovered rotors in Germany in the 1930s with an open sailplane. Now 96, Kuettner is a principal investigator on T-REX. "I’ve always wanted to explore rotors," he says. "It’s taken me this long to find a way."

Thanks to HIAPER, Kuettner’s dream of understanding turbulence near high mountains may soon become a reality.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>