Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storms lower ozone levels

29.10.2001


The North Atlantic Oscillation mixes the surrounding region’s air. © M. Visbeck


Ozone miniholes over the North Atlantic follow the unsteady pulse of climate fluctuations.

Recurring fluctuations in the North Atlantic climate are punching miniholes in the ozone layer, exposing Scandinavia and northern Europe to higher levels of ultraviolet radiation than normal, say two climatologists.

Seesawing air pressure over Greenland and the subtropical north Atlantic Ocean stirs the atmosphere and wafts ozone-depleted air towards populated high-latitude regions in the Northern Hemisphere, they suggest1.



In the winter of 1999 the ozone that usually blankets some areas of the North Atlantic was replaced by a threadbare sheet. The amount of ozone in the atmosphere over southern Scandinavia that December reached a record low.

These temporary but substantial episodes of ozone depletion are called ’miniholes’. They are associated with greater levels of harmful ultraviolet rays at ground level - atmospheric ozone usually filters out this radiation from sunlight.

Ozone depletion and holes normally surround the poles, where chemical reactions involving human-made CFC gases decimate ozone in the upper atmosphere. The North Atlantic’s ozone miniholes aren’t created this way. Natural processes make and destroy atmospheric ozone constantly. The thickness of the ozone layer worldwide depends on how ozone-rich and ozone-poor air gets mixed.

Yvan Orsolini of the Norwegian Institute for Air Research in Kjeller and Varavut Limpasuvan of the Costal Carolina University in Conway, South Carolina, say that a climate phenomenon called the North Atlantic Oscillation (NAO) dominates the mixing of air in the North Atlantic region.

The NAO is responsible for much of the region’s monthly and yearly variations in climate, much as the El Nino/Southern Oscillation influences the climates of many tropical and mid-latitude regions in the Southern Hemisphere.

The NAO tips between two phases. In its positive phase, there is a pronounced low-pressure region over Iceland, and high pressure over the subtropical Atlantic (around the Azores and the coast of Portugal). In the negative phase, the Icelandic low and the subtropical high are much weaker. These two phases switch every year or so, bringing changes in weather and temperatures over Europe and Scandinavia.

The NAO also controls how air circulates in the North Atlantic, which led Orsolini and Limpasuvan to suspect that it might influence the appearance of ozone miniholes. In the positive phase, a jet of air from North America swoops northeastwards across the North Atlantic and Scandinavia, bringing storms. In the negative phase a weaker jet carries moist air from America to the Mediterranean region.

Ozone variability and miniholes tend to appear along storm tracks over the North Atlantic. Orsolini and Limpasuvan compared 20 years of satellite ozone measurements with measurements of the phase and strength of the NAO.

They found that dips in ozone match up with times when storms cross the Atlantic into Scandinavia and northern Europe. The researchers reason that the transatlantic jet during this phase brings ozone-poor air from the lower atmosphere of the subtropical United States to the base of the upper atmosphere in northern Europe and Scandinavia, diluting the ozone layer here.

They point out that pronounced ’positive-phase’ NAO events have been more common since the 1980s and 1990s, and that these are probably responsible for the increasing incidence of ozone miniholes.

References
  1. Orsolini, Y. J. & Limpasuvan, V. The North Atlantic Oscillation and the occurrences of ozone miniholes. Geophysical Research Letters, 20, 4099 - 4102, (2001).


PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-5.html
http://www.nature.com/nsu/

More articles from Earth Sciences:

nachricht "Airlift" facility: TU Freiberg tests new mining technology in research and training mine
22.10.2019 | Technische Universität Bergakademie Freiberg

nachricht Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
21.10.2019 | University of British Columbia

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>