Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storms lower ozone levels

29.10.2001


The North Atlantic Oscillation mixes the surrounding region’s air. © M. Visbeck


Ozone miniholes over the North Atlantic follow the unsteady pulse of climate fluctuations.

Recurring fluctuations in the North Atlantic climate are punching miniholes in the ozone layer, exposing Scandinavia and northern Europe to higher levels of ultraviolet radiation than normal, say two climatologists.

Seesawing air pressure over Greenland and the subtropical north Atlantic Ocean stirs the atmosphere and wafts ozone-depleted air towards populated high-latitude regions in the Northern Hemisphere, they suggest1.



In the winter of 1999 the ozone that usually blankets some areas of the North Atlantic was replaced by a threadbare sheet. The amount of ozone in the atmosphere over southern Scandinavia that December reached a record low.

These temporary but substantial episodes of ozone depletion are called ’miniholes’. They are associated with greater levels of harmful ultraviolet rays at ground level - atmospheric ozone usually filters out this radiation from sunlight.

Ozone depletion and holes normally surround the poles, where chemical reactions involving human-made CFC gases decimate ozone in the upper atmosphere. The North Atlantic’s ozone miniholes aren’t created this way. Natural processes make and destroy atmospheric ozone constantly. The thickness of the ozone layer worldwide depends on how ozone-rich and ozone-poor air gets mixed.

Yvan Orsolini of the Norwegian Institute for Air Research in Kjeller and Varavut Limpasuvan of the Costal Carolina University in Conway, South Carolina, say that a climate phenomenon called the North Atlantic Oscillation (NAO) dominates the mixing of air in the North Atlantic region.

The NAO is responsible for much of the region’s monthly and yearly variations in climate, much as the El Nino/Southern Oscillation influences the climates of many tropical and mid-latitude regions in the Southern Hemisphere.

The NAO tips between two phases. In its positive phase, there is a pronounced low-pressure region over Iceland, and high pressure over the subtropical Atlantic (around the Azores and the coast of Portugal). In the negative phase, the Icelandic low and the subtropical high are much weaker. These two phases switch every year or so, bringing changes in weather and temperatures over Europe and Scandinavia.

The NAO also controls how air circulates in the North Atlantic, which led Orsolini and Limpasuvan to suspect that it might influence the appearance of ozone miniholes. In the positive phase, a jet of air from North America swoops northeastwards across the North Atlantic and Scandinavia, bringing storms. In the negative phase a weaker jet carries moist air from America to the Mediterranean region.

Ozone variability and miniholes tend to appear along storm tracks over the North Atlantic. Orsolini and Limpasuvan compared 20 years of satellite ozone measurements with measurements of the phase and strength of the NAO.

They found that dips in ozone match up with times when storms cross the Atlantic into Scandinavia and northern Europe. The researchers reason that the transatlantic jet during this phase brings ozone-poor air from the lower atmosphere of the subtropical United States to the base of the upper atmosphere in northern Europe and Scandinavia, diluting the ozone layer here.

They point out that pronounced ’positive-phase’ NAO events have been more common since the 1980s and 1990s, and that these are probably responsible for the increasing incidence of ozone miniholes.

References
  1. Orsolini, Y. J. & Limpasuvan, V. The North Atlantic Oscillation and the occurrences of ozone miniholes. Geophysical Research Letters, 20, 4099 - 4102, (2001).


PHILIP BALL | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-5.html
http://www.nature.com/nsu/

More articles from Earth Sciences:

nachricht Turbulence creates ice in clouds
08.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Manganese nodules: project on environmental impact during deep sea mining
08.11.2019 | Jacobs University Bremen gGmbH

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>