Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced Aircraft to Probe Hazardous Atmospheric Whirlwinds

02.03.2006


A mountain wave cloud hovers over California’s Owens Valley. This month, a team of scientists, using the advanced HIAPER aircraft and other tools, is launching a field project to learn more about the turbulent rotors that form underneath mountain waves. (Photo courtesy Jay Packer.)


The nation’s newest and most advanced research aircraft will participate in its first major mission March 1 through April 30, when it will study a severe type of atmospheric turbulence that forms near mountains and endangers airplanes. The $81.5 million HIAPER aircraft, owned by the National Science Foundation and operated by the National Center for Atmospheric Research (NCAR), will fly over treacherous whirlwinds, known as rotors, as they form above California’s Sierra Nevada mountain range.

HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) will embark on a series of 10-hour flights that will take it from its base at Jefferson County Airport in Colorado to California’s Owens Valley during next month’s Terrain-Induced Rotor Experiment, or T-REX. The aircraft will explore the mountain waves that form over the Sierra Nevada and are associated with the rotors, as well as study the impacts of the waves on atmospheric regions as high as the stratosphere. The research will lead to better prediction of these aviation hazards.

Rotors, which form on the lee side of high, steep mountains beneath the cresting waves of air, have contributed to a number of aircraft accidents, but scientists know little about their structure and evolution. They are common in the Sierras because the area has the steepest topography in the continental United States. Owens Valley sits some 10,000 feet directly below the highest peaks of the adjacent mountains.



"From a scientific point of view, this will be a fantastic part of the atmosphere to be flying around in because of the mountain waves, the turbulence, and the movements of air masses," says NCAR scientist Jorgen Jensen. "With our advanced instrument payload and our flight paths, the amount of data we will collect will be absolutely unprecedented for describing airflow over mountains."

HIAPER, a highly instrumented Gulfstream V that is capable of reaching an altitude of 51,000 feet and cruising for 7,000 miles, is ideally suited for the experiment.

"HIAPER’s first science campaign, on the origin and evolution of rotors, could not have been done without the long-range capabilities of the aircraft," says Margaret Leinen, NSF assistant director for geosciences. "In addition, the communications and data capabilities of HIAPER will allow the entire science team of T-REX to participate in the experiment, whether or not they are actually flying on board. "

James Huning, the program manager for HIAPER at the National Science Foundation, adds, "The project will help forecasters predict when and where rotors are most likely to occur and the degree of their intensity, as well as the nature of the mountain waves, or gravity waves, that crest high above rotors and cause strong turbulence. Without HIAPER, this understanding would not be possible."

NCAR’s Earth Observing Laboratory will oversee T-REX field operations from Bishop, California, and manage the resulting data.

"The results of this project should help pilots by enabling computer models to be more effective in forecasting turbulent conditions associated with mountain waves," explains Richard Dirks, NCAR field operations director.

Project details

The international research team of about 60 scientists, led by scientific project director Vanda Grubišiæ of the Desert Research Institute in Reno, Nevada, will study the rotors from several perspectives. On the ground, researchers will probe them with radars, lidars (laser-based radars), automated weather stations, wind profilers, and balloons. Researchers aboard HIAPER will observe the rotors from above and release dropsondes (instruments that contain temperature, wind, and other sensors) into the most turbulent areas. Two other aircraft from the University of Wyoming and a team of British government agencies, flying at lower elevations, will also gather data and aim cloud radars into the rotors.

The data they retrieve should help researchers understand the three-dimensional nature of the rotors. The project will help forecasters predict when and where rotors are most likely to occur and the degree of their intensity, as well as the nature of the mountain waves, or gravity waves, that crest high above the rotors and cause strong turbulence as well.

"Rotors have intrigued scientists since the 19th century, and frustrated pilots since they started flying near the mountains," Grubišiæ says. "With the newest advances in airborne measurements, remote sensing, and atmospheric numerical modeling, we are now in a position to tackle some basic scientific questions on the evolution, structure, and predictability of rotors and also breaking mountain waves. We expect T-REX results to help improve aviation safety near mountainous terrain."

Scientists will also study the pollutants and particles that are moved around by the waves and affect climate and air quality. By flying as high as the lower stratosphere, HIAPER will enable researchers to gather data about the distribution of chemicals high in the atmosphere after they get rearranged by mountain waves.

A research veteran

The T-REX team will include veteran NCAR scientist Joachim Kuettner, who first explored the newly discovered mountain waves in Germany in the 1930s at the helm of an open sailplane. Now 96, Kuettner is a principal investigator on T-Rex. "I’ve always wanted to explore the rotors," he says. "It’s taken me this long."

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>