Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New volcano research moves closer to predicting eruptions

22.02.2006


Research into how volcanoes erupt led by Durham University’s Earth Sciences Department is taking volcanologists a step closer to being able to predict when and on what scale volcanoes will erupt.



In the three-year EU Erupt Project, funded by almost half a million euros of EU Framework 5 funding, scientists from seven European universities are working on four volcanoes. They have developed new techniques to examine what happens underground before a volcano erupts and how magma develops and have made a considerable breakthrough in dating past geophysical events that preceded eruptions. A key set of clues comes from the study of cores and rims on crystals which have grown from the magmas, which can be read like tree rings.

Using this new technique, volcanologists can now correlate data from traditional volcanology – the study of deposits from past volcanoes (or ‘volcanic autopsy’) to date previous eruptions, with geophysics – which offers a real time snapshot of state of a volcanic system. For example the team working on Vesuvius dated a magmatic event which appears to correspond to the occurrence of an earthquake 17 years before the volcano famously erupted in AD79. The importance of this is that for the first time volcanologists can set a timescale on the impact of geophysical activity on magma systems and interpret the link to volcanic eruptions or hazards.


Professor Jon Davidson, from Durham University and Principal Investigator on ERUPT said: “These new techniques are helping us build up profiles for different volcano types, which will help volcanologists around the world understand better how magma works, its composition – what makes it more volatile – how it is stored and how and when it is likely to cause an eruption.”

The EU ERUPT Project (European Research on Understanding Processes and Timescales of Magma Evolution in Volcanic Systems), involves scientists from seven European universities, selected for their diverse range of expertise in volcanology with experience working with volcanic systems all over the world. The other institutions involved in the ERUPT Project are the University of Florence, University of Goettingen, Vesuvius Observatory (Naples), University of Leeds, CSIC (Barcelona) and University College, Dublin.

The team chose four European volcanoes to study for the project that represented a broad range of types of volcanoes in terms of size, frequency and intensity of eruption, from Stromboli with frequent relatively gentle eruptions, to Teide and Vesuvius with medium scale eruptions to Campi Flegrei representing the larger end of the scale. The techniques include examining crystals, rock textures and exhumed magma chambers, dating rocks and crystals and determining the pressures and temperatures of crystal growth and exchange between magmas.

The results of this research have been presented to the Italian civil authorities and a number of papers have been published in peer-review journals such as Journal of Petrology on various aspects of the project.

Jane Budge | alfa
Further information:
http://www.durham.ac.uk/news

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>