Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the tsunami

20.02.2006


The co-dependence of mortality risk and poverty

The Indian Ocean tsunami, the Katrina hurricane catastrophe and the Pakistan earthquake in late 2005 bear disquieting similarities in their consequences on human populations. The tsunami took 300,000 lives with more than 100,000 still missing. Although many of the missing may well be displaced rather than casualties, the death toll will likely remain in excess of 300,000. Early images from the catastrophe would have lead one to believe that tourist were preferentially impacted, but the world soon learned that this was due to the fact that tourists were the only ones with video equipment at the ready. In fact, the great majority of those who perished were relatively poor people; many of them subsistence level fishermen, and met their fate away from the cameras lens. These people contributed little to the formal economy and because of this the economic impact of the tsunami is unclear. Insured property losses were small not because little property was lost but because so little was insured.

As a result, the tsunami disaster underscores the well-supported observation that people in the lower rungs of society around the world are at far greater mortality risk from natural disasters than those who are better off. The Magnitude 7.6 October 2005 earthquake in Pakistan, for example, took the lives of more than 30,000 people while the Northridge earthquake in California took less than 100 lives. Countries that fall lowest on measures such as the Human Development Index, such as the poorest countries in Africa, are known to suffer much greater losses than richer countries. This is likely due in part to the prevalence of structures and inadequate emergency response institutions, but the vulnerability of the poor is also amplified by where they live, which is often in regions prone to flooding and landslides or in regions susceptible to climate extremes.



Presenter: John Mutter, Deputy Director, The Earth Institute at Columbia University
Track: Mathematics and Statistics
Date: Sunday, February 19, 2006
Time: 10:30 a.m. to 12:00 noon

Ken Kostel | EurekAlert!
Further information:
http://www.earth.columbia.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>