Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reproducing the Amazon’s black soil could bolster fertility and remove carbon from atmosphere

20.02.2006


The search for El Dorado in the Amazonian rainforest might not have yielded pots of gold, but it has led to unearthing a different type of gold mine: some of the globe’s richest soil that can transform poor soil into highly fertile ground.



That’s not all. Scientists have a method to reproduce this soil -- known as terra preta, or Amazonian dark earths -- and say it can pull substantial amounts of carbon out of the increasing levels of carbon dioxide in the Earth’s atmosphere, helping to prevent global warming. That’s because terra preta is loaded with so-called bio-char -- similar to charcoal.

"The knowledge that we can gain from studying the Amazonian dark earths, found throughout the Amazon River region, not only teaches us how to restore degraded soils, triple crop yields and support a wide array of crops in regions with agriculturally poor soils, but also can lead to technologies to sequester carbon in soil and prevent critical changes in world climate," said Johannes Lehmann, assistant professor of biogeochemistry in the Department of Crop and Soil Sciences at Cornell University, speaking today (Feb. 18) at the 2006 meeting of the American Association for the Advancement of Science.


Lehmann, who studies bio-char and is the first author of the 2003 book "Amazonian Dark Earths: Origin, Properties, Management," the first comprehensive overview of the black soil, said that the super-fertile soil was produced thousands of years ago by indigenous populations using slash-and-char methods instead of slash-and-burn. Terra preta was studied for the first time in 1874 by Cornell Professor Charles Hartt.

Whereas slash-and-burn methods use open fires to reduce biomass to ash, slash-and-char uses low-intensity smoldering fires covered with dirt and straw, for example, which partially exclude oxygen.

Slash-and-burn, which is commonly used in many parts of the world to prepare fields for crops, releases greenhouse gases into the atmosphere. Slash-and-char, on the other hand, actually reduces greenhouse gases, Lehmann said, by sequestering huge amounts of carbon for thousands of years and substantially reducing methane and nitrous oxide emissions from soils.

"The result is that about 50 percent of the biomass carbon is retained," Lehmann said. "By sequestering huge amounts of carbon, this technique constitutes a much longer and significant sink for atmospheric carbon dioxide than most other sequestration options, making it a powerful tool for long-term mitigation of climate change. In fact we have calculated that up to 12 percent of the carbon emissions produced by human activity could be offset annually if slash-and-burn were replaced by slash-and-char."

In addition, many biofuel production methods, such as generating bioenergy from agricultural, fish and forestry waste, produce bio-char as a byproduct. "The global importance of a bio-char sequestration as a byproduct of the conversion of biomass to bio-fuels is difficult to predict but is potentially very large," he added.

Applying the knowledge of terra preta to contemporary soil management also can reduce environmental pollution by decreasing the amount of fertilizer needed, because the bio-char helps retain nitrogen in the soil as well as higher levels of plant-available phosphorus, calcium, sulfur and organic matter. The black soil also does not get depleted, as do other soils, after repeated use.

"In other words, producing and applying bio-char to soil would not only dramatically improve soil and increase crop production, but also could provide a novel approach to establishing a significant, long-term sink for atmospheric carbon dioxide," said Lehmann. He noted that what is being learned from terra preta also can help farmers prevent agricultural runoff, promote sustained fertility and reduce input costs.

Blaine P. Friedlander Jr. | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>