Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sediment layer may forecast greatest earthquakes

01.02.2006


Researchers at Yale and the University of Washington report that great earthquakes, like the 2004 Sumatra earthquake, may be caused by the build up of sediment on top of subduction zones, suggesting a new way to forecast these most severe earthquakes.



Subduction zones are the boundaries where two tectonic plates collide -- one plate pushes over and one pushes under the other. The most severe earthquakes in recent history -- in Indonesia in 2004, Alaska in 1964, Chile in 1960 and the Pacific Northwest in 1700 -- occurred at subduction zone faults. In the United States, there are subduction zones along the Aleutian margin of Alaska and the Cascadia margin bordering the west coast of the Pacific Northwest.

"Seismologists have long known that the motion of the plates at subduction zones can be smooth and steady in some areas, and sticky and unsteady in other areas," said Mark Brandon, professor of geology and geophysics at Yale and senior author on the paper appearing in the February issue of the journal Geology.


Earth plates move, and earthquakes ensue in these subduction zones, but some quakes are far more damaging than others. Doctoral student Christopher W. Fuller and associate professor Sean D. Willett at the University of Washington, along with Brandon at Yale, believe they have found a key to identifying specific areas within a subduction zone that will produce the most severe damage when they rupture.

The Earth’s surface is laced with about 32,000 miles of subduction zones, and the motion along the margins of the zones averages a slip of about two inches per year. However, where the margins stick and then rip apart into earthquakes, displacements have been as much as 65 feet, over many hundreds of miles, in a matter of only tens of minutes, according to Brandon.

The team used computer simulations to determine how the upper plate deformed above a subduction zone fault. "The leading edge of the overriding plate will continually deform, much like snow in front of a snow plow blade," according to Brandon. "As one plate moves under another and the upper plate deforms, it breaks up adhesion on the subduction fault and reduces its ability to generate greater earthquakes."

Past research has shown that as a subducting plate slides beneath an upper plate, stress builds where the plates meet and stick, and the upper plate warp creates a wedge and a bowl-shaped depression, called a forearc basin. Beneath the sea, this basin fills with sediment that empties from nearby rivers. It appears that the most severe subduction zone earthquakes occur in areas where such sediment-filled basins are found.

These current simulations showed, however, that when sediment was deposited on top of the overriding plate, it reinforced the edge of the plate and caused it to "stick," directly above where the earthquake would happen so that it no longer deformed internally. The researchers speculate that this allows the subduction zone to remain at rest for longer periods of time and thus to "stick," making it more prone to earthquake events.

"This phenomenon is analogous to a mayonnaise jar in the refrigerator. The lid opens easily if you use it every day. But if you open the jar infrequently, adhesion will make it difficult to open," said Brandon. "A sharp tap on a counter breaks the adhesion and the lid opens with a quick spin. In the Earth, the earthquake marks the break down of adhesion on the subduction zone."

"Over millions of years, the sediment typically piles to great depths, from a half-mile to nearly two miles, and in rare cases it might reach three miles deep," said Fuller, the lead author on the paper. "The increased weight of the sediment stops deformation from occurring."

This modeling could have implications for forecasting areas within a subduction zone, such as Cascadia, great earthquakes are the most likely to occur. But the work is not applicable to every subduction zone because each has different characteristics. "You have to understand the nature of basins and how they work in each area before you can use them as an interpretive tool," Fuller said.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>