Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Converging Satellites Unlock Hurricane Lili’s Sudden Demise

31.01.2006


Using a fleet of NASA and other satellites as well as aircraft and other observations, scientists were able to unlock the secret of Hurricane Lili’s unexpected, rapid weakening as she churned toward a Louisiana landfall in 2002. The data from multiple satellites enabled researchers to see dry air move into the storm’s low levels, partially explaining why Lili weakened rapidly.


Hurricane Lili was a Category 1 hurricane, and was centered over Louisiana on Oct. 3, 2002. This image was taken by the Moderate Imaging Spectroradiometer (MODIS) instrument, aboard NASA’s Terra satellite. At this time, Lili had sustained winds of 92 mph near the center. On October 4, Lili was absorbed by an extratropical low while moving northeastward near the Tennessee/Arkansas border. Click image to enlarge. Credit NASA/GSFC/ MODIS Rapid Response



This study focuses on the rapid weakening of Hurricane Lili over the Gulf of Mexico beginning early on Oct. 3, 2002. During this time span, Hurricane Lili rapidly weakened from a category 4 to a category 1 storm, with its maximum sustained winds decreasing by 45 knots (51.8 mph) in the 13-hour period, until she made landfall in Louisiana. Operational computer models failed to predict this rapid weakening, which is not well-understood.

The study is being presented at the 86th Annual Meeting of the American Meteorological Society in Atlanta, Ga., during the week of Jan. 30. It was conducted by researchers from Mississippi State University (MSU), Mississippi State, Miss., and the National Center for Atmospheric Research (NCAR), Boulder, Colo.


"Because a polar-orbiting satellite can only obtain regional observations once per day, the ability to combine observations from multiple satellites over the data-sparse ocean is a key to understanding tropical cyclone intensity change," says Dr. Pat Fitzpatrick, the principal investigator from MSU.

In order to dissect this complex puzzle, scientists turned to data from NASA’s Terra, Aqua, QuikSCAT and Tropical Rainfall Measuring Mission (TRMM) satellites, as well as data from the National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (AVHRR) aboard Geostationary Operational Environmental Satellite (GOES). They also looked at data from sensors called "dropsondes" that were dropped from hurricane hunter airplanes while flying over Hurricane Lili. Those dropsondes provided temperature, humidity and wind data.

The different satellites provided a variety of data to look at the hurricane’s components. QuikSCAT provided surface winds; Aqua provided high-resolution temperature and moisture profile data; and GOES-8 supplied upper-level winds. Sea Surface Temperature data was also measured from Aqua, Terra, TRMM and AVHRR. Standard weather observations were also incorporated, including maritime surface data from the National Data Buoy Center.

All of these different components were fed into an NCAR computer model called MM5 that re-creates atmospheric and oceanic conditions in four dimensions (height, width, area and time). The data was combined using a "Four-Dimensional Variational Analysis" (4DVAR) system. The MM5 computer model and 4DVAR system, developed by NCAR scientists, essentially re-created the conditions when Hurricane Lili weakened, so scientists could better understand the cause of the drop in strength. The model showed that low-level drier air, not observed in the conventional data, moved into the west side of Lili, at 00 Universal Time on Thursday, Oct. 3, 2002, (Wednesday, Oct. 2, at 8:00 p.m. ET), partially explaining the storm’s weakening.

That dry air created an "open eyewall" which is basically a break up in the powerful thunderstorms that circle the open air center (eye) of the hurricane. Once the eyewall starts to break down, the storm weakens quickly.

The computer model also showed that the GOES upper-level wind data and QuikSCAT satellite wind information can improve hurricane track forecasts. "These satellites, through the 4DVAR technique, improved the inner-core wind structure and also defined the steering currents better," Fitzpatrick said. When this additional wind data from those two satellites was input, the computer model was also able to better re-create Hurricane Lili’s track at landfall.

A paper on this subject has been submitted for review to Monthly Weather Review on the 4DVAR experiments, titled "The Impact of Multi-satellite Data on the Initialization and Simulation of Hurricane Lili’s (2002) Rapid Weakening Phase." The scientists involved in this project are Xiaoyan Zhang and Qingnong Xiao, of the NCAR; and Pat Fitzpatrick, Nam Tran, Yee Lau, Sachin Bhates, and Valentine Anantharaj of MSU.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2006/ams_lili.html
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>