Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2005 science breakthrough: Revising Earth’s early history

23.12.2005


During Earth formation, decay of short-lived radioactive isotopes and surface bombardment from large bodies heated Earth’s mantle and created a deep magma ocean


Earth’s future was determined at birth. Using refined techniques to study rocks, researchers at the Carnegie Institution’s Department of Terrestrial Magnetism (DTM) found that Earth’s mantle--the layer between the core and the crust--separated into chemically distinct layers faster and earlier than previously believed. The layering happened within 30 million years of the solar system’s formation, instead of occurring gradually over more than 4 billion years, as the standard model suggests. The new work was recognized by Science magazine, in its December 23 issue, as one of the science breakthroughs for 2005.

Carnegie scientists Maud Boyet and Richard Carlson analyzed isotopes--atoms of an element with the same number of protons, but a different number of neutrons--of elements in rock samples for their work. As Carlson explains, "Isotopes exist naturally in different proportions and are used to determine conditions under which rock forms. Radioactive isotopes are particularly handy because they decay at a predictable rate and can reveal a sample’s age and when its chemical composition was established."

In the standard model of the geochemical evolution of the Earth, the Earth’s mantle has been evolving gradually over Earth’s 4.567-billion-year history primarily through the formation of the chemically distinct continental crust. Shortly after solid material began condensing from the hot gas of the cooling early solar system, the object that would become Earth grew by the collision and accretion of smaller rocky bodies. The chemical composition of these building blocks is preserved today in primitive meteorites called chondrites.



In the 1980s, scientists analyzed the ratio of isotopes of the rare earth element neodymium in chondrites and various terrestrial rocks collected at or near the Earth’s surface and found that the samples shared a common composition. Researchers believed that this ratio remained constant from the beginning of Earth formation. Using new-generation equipment, Boyet and Carlson found, surprisingly, that the terrestrial samples did not have the same ratio as the meteorites. Compared to chondrites, all terrestrial rocks measured have an excess of the mass 142 isotope of neodymium (142Nd), which is the decay product of a now-extinct radioactive isotope of samarium of mass 146 (146Sm) that was present at the birth of the solar system but decayed away shortly thereafter. The excess in 142Nd allowed the researchers to determine when the composition of the Earth diverged from that of the meteorites--within the first 30 million years after solar system formation, which is less than 1% of the age of our planet.

To explain the excess of 142Nd found in the terrestrial samples, the Carnegie scientists believe that the Earth was largely molten during its formation and that rapid crystallization of Earth’s early magma ocean caused the mantle to separate into chemically distinct layers, one containing a high ratio of Sm to Nd similar to that observed today in the mantle source of the volcanism along ocean ridges. The complementary reservoir, with low 142Nd abundance, has never been sampled at the surface and hence could now be deeply buried in the so-called D" layer at the very base of the mantle, above the core. This "missing" layer should be rich in the elements uranium, thorium, and potassium, whose long-lived radioactive decay heats Earth’s interior and causes our planet to remain geologically active. This hot layer above the core could help to keep the outer core molten so that circulation of liquid iron can produce Earth’s magnetic field, and it could instigate the hot plumes of upwelling mantle material that give rise to volcanically active islands, such as Hawaii.

Measurements by Boyet and Carlson also show that lunar rocks have the same abundance of 142Nd as the terrestrial samples, a finding that adds to the evidence that the Moon formed from the Earth. Since Mars also experienced early melting, as indicated by the chemical and isotopic composition of Martian meteorites, the new results now link the early evolution of Earth, Moon, and Mars and highlights the importance of early events in determining the chemical characteristics of the terrestrial planets.

"The work of Boyet and Carlson, when added to what has already been determined for the Moon and Mars, shows that the earliest days of the inner planets were violent times in solar system history," adds DTM director Sean Solomon. "Theoretical work by Carnegie scientist George Wetherill had pointed to this result, but now we have a clear chemical signature of this episode of Earth history."

Dr. Richard Carlson | EurekAlert!
Further information:
http://www.dtm.ciw.edu
http://www.CarnegieInstitution.org

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>