Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial floods are jointly responsible for deficits

20.12.2005


“Hydropeaking“ in rivers and streams is becoming a problem for water ecology, particularly for fish. Rapid change in the release of water from alpine hydroelectric power stations leads to artificial discharge variations on a daily and weekly basis. Of Switzerland’s larger rivers, one in four is influenced by such water surges. Together with the wide-spread river training and channelisation, such intermittent flow is one of the main causes for the biological deficits that can be observed, for example, in the valleys of the Rhone. The success of revitalisation measures necessary in channelled waters depends on many factors but it may be put into question if the reduction of such surges is not considered.



The Rhone-Thur project is being carried out by the research institutes Eawag and WSL as well as by the hydrology institutes at the ETH in Zurich and the EPFL in Lausanne. The results concerning hydropeaking are now available. The rapid increase and ebbing away of water in riverbeds as a consequence of the use of hydropower has a distinct influence on ecological entegrity in addition to the river morphology deficits.

Broad Effects


In those sections subject to hydropeaking, researchers examining the Rhone have noted considerably scarce colonisation and lower biodiversity among fish and other water organisms than would be expected in non-affected sections. Among other things, the increase in the influence of hydropeaking between Brig and the Rhone Delta at Lake Geneva is reflected by the progressive decline in the occurrence of stone flies and ephemerides (photo) typically found in flowing waters. Typical effects of hydropeaking also include increased turbidity during the winter and short-term fluctuations in temperature. Water organisms are drifted away by rapidly increasing water levels during hydropeaking. When the water level drops again, they may ground at locations that quickly dry out.

This process may even increase when alpine rivers such as the Rhone are morphologically improved (revitalised). While shallow riparian areas of near-natural rivers are often the most multifariously colonised and well-used habitat of the whole river, the impoverished zones found in stretches subject to hydropeaking contain only those few plants and animals that can tolerate regular dry periods. Certain species of filamentous green algae and the larvae of specific caddy flies are such resistant organisms. The Rhone-Thur project also documented that even 30 kilometres downstream in the Rhone, hydropeaking is hardly attenuated (see diagram) and that its influence is not only limited to the river alone: Its effects are also to be noted in the underground and in the vicinity of the river, caused, for example, by changed infiltration rates into groundwater.

To be taken into account during revitalisation projects

Hydropeaking alone can not be made responsible for many of the ecological deficits found. This could be shown especially for the fish in the river Rhone: The today’s population of brown trout (the most frequently found fish by far) reflect the impoverished and monotonous morphology of the river and other anthropogenic influences (such as artificial stocking) just as much as hydropeaking. Therefore, the sole improvement of discharge i.e. without improvement of river morphology, would hardly suffice as a means of reinstating the ecological integrity of the river to the extent desired. On the other hand, however, hydropeaking complicates the matter and poses an additional, limiting condition on the revi-talisation of rivers and streams. This means, for instance, that when widening riverbeds, it must be assured that sufficient structural elements - gravel banks, dead wood etc. - are available and not only those areas are extended that always dry out after peak flow.

Hydropeaking attenuation is possible

Up to now, no legal regulations on hydropeaking exist either in Switzerland or in other countries. Regulations are imposed from case to case, for example on the renewal of operating licences. Both operational as well as structural measures can be taken into consideration to provide attenuation of peak flows. Results from the Rhone-Thur-project show that, when taking the economic viability of hy-dropower into account, the building of retention pools or underground storage systems is often the most sensible solution. Such pools already partly exist, for example at the Linthal (Glarus) and Amsteg (Uri) power stations in Switzerland and in Alberschwende in Austria. Depending on retention volume, certain hydropeaking effects can be prevented completely or in part - such as large daily variations of water level and flow rates in winter, for example, as well as high hydropeaking rates or fast changes in temperature and turbidity. Other phenomenons, such as the shift in average monthly discharge rates and the comparatively high concentrations of suspended solids in winter still remain, however.

Further research required

As for the river Rhone, several questions on hydropeaking are still not answered for many streams and rivers in the alpine region. Recommended or threshold values that would permit a hydro-ecological assessment of the effects of hydropeaking are still missing to a large extent and too little is known about the interdependencies between hydropeaking and other deficits concerning rivers and streams, in particular on their canalisation.

The Rhone-Thur project

The interdisciplinary Rhone-Thur project launched in 2002 accompanied river engineering projects concerning the rivers Rhone and Thur. The aim of the project was to develop means and tools which could serve as basis for further revitalisation projects and allow the efficient implementation of projects. The project is supported by Eawag, WSL, VAW and EPFL. Further partners are the Swiss Confederation (BWG and BUWAL), the cantons Wallis and Thurgau, the universities of Zurich and Neuchâtel, the Centre for Advice on Water-meadows in Yverdon as well as private environmental and engineering offices. More information on the project can be found under: www.rhone-thur.eawag.ch

More information on hydropeaking can be found under: www.rivermanagement.ch
Here, you can also find news on river widening projects which can improve habitats on corrected, straightened streams and rivers. Downloads of photos are available under “Media” on www.eawag.ch.

Andri Bryner | alfa
Further information:
http://www.eawag.ch
http://www.eawag.ch/services_e/pr/e_pressetexte.html

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>