Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming could halt ocean circulation, with harmful results

09.12.2005


Absent any climate policy, scientists have found a 70 percent chance of shutting down the thermohaline circulation in the North Atlantic Ocean over the next 200 years, with a 45 percent probability of this occurring in this century. The likelihood decreases with mitigation, but even the most rigorous immediate climate policy would still leave a 25 percent chance of a thermohaline collapse.



"This is a dangerous, human-induced climate change," said Michael Schlesinger, a professor of atmospheric sciences at the University of Illinois at Urbana-Champaign. "The shutdown of the thermohaline circulation has been characterized as a high-consequence, low-probability event. Our analysis, including the uncertainties in the problem, indicates it is a high-consequence, high-probability event."

Schlesinger will present a talk "Assessing the Risk of a Collapse of the Atlantic Thermohaline Circulation" on Dec. 8 at the United Nations Climate Control Conference in Montreal. He will discuss recent work he and his colleagues performed on simulating and understanding the thermohaline circulation in the North Atlantic Ocean.


The thermohaline circulation is driven by differences in seawater density, caused by temperature and salinity. Like a great conveyor belt, the circulation pattern moves warm surface water from the southern hemisphere toward the North Pole. Between Greenland and Norway, the water cools, sinks into the deep ocean, and begins flowing back to the south.

"This movement carries a tremendous amount of heat northward, and plays a vital role in maintaining the current climate," Schlesinger said. "If the thermohaline circulation shut down, the southern hemisphere would become warmer and the northern hemisphere would become colder. The heavily populated regions of eastern North America and western Europe would experience a significant shift in climate."

Higher temperatures caused by global warming could add fresh water to the northern North Atlantic by increasing the precipitation and by melting nearby sea ice, mountain glaciers and the Greenland ice sheet. This influx of fresh water could reduce the surface salinity and density, leading to a shutdown of the thermohaline circulation.

"We already have evidence dating back to 1965 that shows a drop in salinity around the North Atlantic," Schlesinger said. "The change is small, compared to what our model needs to shut down the thermohaline, but we could be standing at the brink of an abrupt and irreversible climate change."

To analyze the problem, Schlesinger and his colleagues first used an uncoupled ocean general circulation model and a coupled atmosphere-ocean general circulation model to simulate the present-day thermohaline circulation and explore how it would behave in response to the addition of fresh water.

They then used an extended, but simplified, model to represent the wide range of behavior of the thermohaline circulation. By combining the simple model with an economic model, they could estimate the likelihood of a shutdown between now and 2205, both with and without the policy intervention of a carbon tax on fossil fuels. The carbon tax started out at $10 per ton of carbon (about five cents per gallon of gasoline) and gradually increased.

"We found that there is a 70 percent likelihood of a thermohaline collapse, absent any climate policy," Schlesinger said. "Although this likelihood can be reduced by the policy intervention, it still exceeds 25 percent even with maximal policy intervention."

Because the risk of a thermohaline collapse is unacceptably large, Schlesinger said, "measures over and above the policy intervention of a carbon tax -- such as carbon capture and sequestration -- should be given serious consideration."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>