Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate models need deeper roots, scientists say

07.12.2005


By soaking up moisture with their roots and later releasing it from their leaves, plants play an active role in regulating the climate. In fact, in vegetated ecosystems, plants are the primary channels that connect the soil to the atmosphere, with plant roots controlling the below-ground dynamics.



"Most climate models assume that roots are shallow -- usually within 6 feet of the surface -- and that only the soil moisture near the surface can significantly impact the climate," said Praveen Kumar, a professor of civil and environmental engineering at the University of Illinois at Urbana-Champaign. "Our research shows that it is not just the near surface, but also the deep reservoir of soil moisture that affect terrestrial heat and moisture processes in land-atmosphere interaction."

A better understanding of this interaction, Kumar said, could lead to more accurate climate models and better predictability.


Using a land surface model, Kumar and graduate student Geremew Amenu are assessing the effects of deep roots on soil moisture and temperature redistribution. Three sites with different vegetation, soil and climate characteristics are being studied: the Mogollon Rim in Arizona, the Edwards Plateau in Texas and the Southern Piedmont in Georgia. Soil depths of up to 30 feet are being investigated.

There are two primary mechanisms by which deep-layer moisture affects the soil surface, Kumar said. First, its temporal variability sets the lower boundary for the transfer of moisture and heat from the surface. And second, this temporal variability influences the uptake of moisture by the plant roots, resulting in the variability of the transpiration and therefore the entire energy balance.

"Our initial results suggest that this second mechanism is predominant, indicating that accurate specification of rooting depth in climate models will play a crucial role in improving predictability," Kumar said.

Through the process of transpiration, plants remove heat from their immediate environment. The evaporated moisture is carried elsewhere, eventually to fall as precipitation, releasing heat in the process. Through this ongoing energy cycle, plants can influence the climate.

"The variation of soil moisture in the deeper layers is a long term variation that we believe will be highly correlated with long term variations produced by climate models," Kumar said. "If we are right, we will have better predictability of climate over a longer period of time, to the extent that plants impact the climate system."

Kumar and Amenu will present the latest results of their modeling efforts, and the implications for climate modeling, at the American Geophysical Union meeting in San Francisco, Dec. 5-9. Their work was funded by the National Oceanic and Atmospheric Administration.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>