Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists gain new insights into ’frozen’ methane beneath ocean floor

01.11.2005


IODP Expedition 311 returns to port with core samples



An international team of scientists supported by the Integrated Ocean Drilling Program (IODP) has completed a unique research expedition aimed at recovering samples of gas hydrate, an ice-like substance hidden beneath the seafloor off Canada’s western coast. Gas hydrate, a mixture of water and mostly methane, is believed to occur under the world’s oceans in great abundance, but it quickly "melts" once removed from the high pressure and cold temperatures of its natural environment, making it very challenging to recover and analyze.

"We’re interested in gas hydrate because we believe these deposits have played an important role in ancient global climate change," explains Michael Riedel of Natural Resources Canada’s Geological Survey of Canada, IODP Expedition 311’s co-chief scientist. "This expedition is the first to explore a transect of deep drilling research sites across the Cascadia Continental Margin and will yield new data that will help us understand the deep origin of the methane that composes the gas hydrate, how the methane is transported into the sediments where gas hydrate exists, and how methane is eventually released into the ocean, and possibly, into the atmosphere where it could impact climate."


"What we’ve found will fundamentally change how we investigate the impact of gas hydrate deposits," confirms IODP co-chief scientist Timothy S. Collett of the U.S. Geological Survey, Denver, Colo. "Expedition 311 has shown that the occurrence of gas hydrate is much more complex than predicted. Instead of finding gas hydrate concentrated in one layer," he explains, "near the base of the zone where it is stable, higher concentrations of gas hydrate were found within coarse-grained sand layers throughout core samples from most of the sites drilled."

Scientists and engineers aboard IODP’s U.S.-sponsored research drilling vessel, the JOIDES Resolution, drilled hundreds of meters below the seafloor and successfully retrieved gas hydrate in long sediment cores. More than 1,200 meters of sediment core samples were recovered from beneath the seafloor during this 37-day expedition. Once core samples are brought onto the ship, marine laboratory specialists work quickly to scan them using various sensors and computers to find the gas hydrate, which is unstable at the surface.

Most previous research on the Cascadia Continental Margin has focused on conducting detailed, remote sensing studies to image gas hydrate in the oceanic sediments. In past research efforts, gas hydrate has been recovered from the Cascadia Margin area using shallow sediment coring systems that allowed only the upper few meters of sediment to be sampled.

Among the discoveries of Expedition 311 was a thick section of gas hydrate lying near the seafloor surface beneath an active vent site, known as the ’bull’s-eye vent,’ where methane gas naturally seeps from the seafloor. This vent site is one of many similar sites observed along the Cascadia Margin and scientists are just starting to understand their role in the overall history of the margin. The episodic nature of the venting and the potential link to earthquake activity, as well as the possible impact on gas release into the ocean and atmosphere, will be researched for many years to come, when future drill site observatories will be linked with the NEPTUNE cable observatory system. Scientists first became interested in gas hydrate in 1982, when it was discovered during a research leg of the Deep Sea Drilling Project, one of two U.S.-sponsored scientific drilling programs that predate IODP. The samples were retrieved from the Middle American Trench region, off the Pacific coast of Guatemala. Since then, gas hydrate has been the focus of numerous studies.

Nancy Light | EurekAlert!
Further information:
http://www.iodp.org

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>