Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mountain winds may create atmospheric hotspots

19.10.2005


Rapidly fluctuating wind gusts blowing over mountains and hills can create "hotspots" high in the atmosphere and significantly affect regional air temperatures. A research paper to be published this month in the Journal of Geophysical Research-Space Physics reports that the actions of such winds can create high-frequency acoustic waves and could stimulate a 1000-Kelvin [1,000-degree Celsius; 2,000-degree Fahrenheit]spike in a short period of time in the thermosphere, at an altitude of 200-300 kilometers [100-200 miles]. Such exceptional temperature increases would require continuous waves, and the heating rate would likely be diminished with intermittent winds.



Richard Walterscheid and Michael Hickey used a theoretical model of the interaction between rough terrain and wind eddies to suggest that high winds may represent a previously unknown source of acoustic waves in the environment. Ocean waves and earthquakes are known to produce similar waves, which strengthen as they propagate higher in the atmosphere. The authors speculate that the waves can heat the atmosphere at prodigious rates and could account for a large part of the unusual and unexplained high-altitude background heating seen above the mountainous landscape in parts of South America.

"We show that that the acoustic waves generated by gusty flow over rough terrain might be a significant source of heating in the upper atmosphere," Hickey says. "These mysterious so-called ’hotspots’ observed above the Andes Mountains could be explained by such acoustic wave heating."


Previous observations near the Andes Mountains in Peru had found that the atmosphere directly above some peaks was approximately 100 Kelvin [100 degrees Celsius; 200 degrees Fahrenheit] hotter than in nearby regions and that the difference occasionally reached as much as 400 Kelvin [400 degrees Celsius; 700 degrees Fahrenheit]. Other research had recorded similar effects near the Rocky Mountains in Colorado. After comparing simulations of atmospheric gravity waves and acoustic waves, the researchers found that the acoustic waves reached higher altitudes than the gravity waves, leading them to speculate that the acoustic waves constituted a far more plausible source of the observed hot spots. They then identified wind fluctuations as the most likely source of the heating, noting that the upwind waves could only be generated by unsteady wind flow.

They cite further evidence indicating that the high- frequency acoustic waves in the thermosphere originated from the ground, including proof that nighttime atmospheric motion (convection) is not a plausible source of the persistent heating. In addition, they note that only high-frequency acoustic waves could cause the thermospheric heating, as the slower-speed gravity waves are not fast enough to reach the higher altitudes and therefore could not produce the substantial effects at that height in the atmosphere.

The paper indicates that moderately strong winds, reaching speeds of approximately 10 meters [30 feet] per second, can generate wave amplitudes of nearly four meters [10 feet] per second above rough terrain. In addition, the authors found that steeply sloping terrain further enhanced the waves, which are generated by rapid variations in the up-and-down turbulence in the air. Wider hills and those spaced further apart can also have a similar wave- generating effect, but the authors found that the wind effects typically do not propagate vertically near isolated hills as they do around rougher terrain.

The researchers note that there are very few detailed field studies of the wind field over hills at present. They report, however, that models and previous research indicates that even weak interactions from acoustic waves can produce significant effects in the thermosphere.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>