Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech geoscientists resolve inconsistent data on crystal growth, dissolution

18.10.2005


Virginia Tech Geoscientists Patricia Dove and Nizhou Han have demonstrated that crystals dissolve and grow by the same set of analogous ’reversed’ mechanisms. Previously, the scientific community had long-maintained that growth and dissolution could not be unified into a single framework of understanding. The new evidence is certain to overturn that perception.



Dove, Han, and James J. De Yoreo of Lawrence Livermore National Laboratory report their research in the Oct. 17 - 21 Early Edition of the Proceedings of the National Academy of Sciences (Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior)

"We call this the Eureka paper," explained Dove. "For more than a decade, our group has been studying how minerals and crystals dissolve while also collaborating with Jim De Yoreo on how organisms grow crystals and minerals into complex shapes such as seashells and bone." It was because of the unique intersection of these two research areas in our laboratory that we were able to establish this fundamental link."


One of the most convincing indications that this paper is onto something quite profound is that the researchers’ approach reconciles inconsistencies between two pre-existing data sets for kaolinite, according to reviewer Bruce Watson, professor of geochemistry at Rensselaer Polytechnic Institute.

Kaolinite is a major earth and industrial material. The researchers show evidence for why their approach is likely to prove applicable to many different kinds of natural and manufactured crystals.

The essential idea is intuitive and elegant with profound implications for all disciplines where crystal dissolution is important, Watson wrote.

In addition to deep scientific questions regarding how fast minerals dissolve over geologic time, the findings will also give new insights for understanding such diverse questions as the long-term durability of containers that will hold nuclear waste, lifetimes of artificial bone materials, and possibly other biomedical issues, including drug delivery, Dove said.

"Dr. Dove’s findings offer a good unifying approach for explaining crystal and mineral dissolution and growth," said James Mitchell, National Academy of Sciences member and professor emeritus of civil and environmental engineering at Virginia Tech. "It offers a new view that is consistent with the data. After you read it, you say, ’Why didn’t I think of that.’" But it is an approach that classical geochemists have not used before, he said.

Dove and her research group won the Department of Energy Best University Research Award when she presented these findings at the symposium on "Isotope and Analytical Geochemistry" in June in Gaithersburg, Md. She is the only two-time winner of this DOE recognition, having also received this award in 1999 at the "Interfacial Processes in Geosciences" symposium at Pacific Northwest National Lab in 1999.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.geos.vt.edu/people/user_detail.php?department_id=1&user_id=2

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>