Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beneficial effects of no-till farming depend upon future climate change

14.10.2005


By storing carbon in their fields through no-till farming practice, farmers can help countries meet targeted reductions in atmospheric carbon dioxide and reduce the harmful effects of global warming.



Growing plants take carbon dioxide from the air and store it as carbon in their tissues. Most of this carbon is returned to the atmosphere as carbon dioxide when crops are harvested and consumed. Some carbon, however, can be permanently stored, or sequestered, in the soil as organic matter. Changes in land management can potentially increase the accumulation of organic carbon in soil.

The amount of carbon stored in soils also depends on how the climate changes and how much carbon dioxide is in the atmosphere, say researchers from the University of Illinois at Urbana-Champaign and Oak Ridge National Laboratory in Tennessee.


"Our research focuses on the feasibility of different sequestration schemes for reducing natural emissions of carbon dioxide or enhancing the natural uptake of atmospheric carbon dioxide," said Atul Jain, a U. of I. professor of atmospheric sciences and lead author of a paper published in the Oct. 12 issue of Geophysical Research Letters. "Converting from conventional plow tillage to no-till practice is among the most cost-effective ways to reduce the buildup of carbon dioxide in the atmosphere."

To study the effect of changes in climate and atmospheric carbon dioxide on soil carbon sequestration, the researchers used a new Earth-system model called the Integrated Science Assessment Model. Developed by Jain and his graduate students, the model includes the complex physical and chemical interactions among carbon-dioxide emissions, climate change, carbon-dioxide uptake by plants and oceans, and changes in farming practices.

About 18 percent of cropland in the United States and about 30 percent of cropland in Canada is under no-till, Jain said. By not tilling their fields, farmers can save labor and fuel costs, reduce soil erosion and preserve precious nutrients. No-till also increases the accumulation of soil organic carbon, thereby resulting in sequestration of atmospheric carbon dioxide.

Changes in no-till land management were simulated with and without changes in climate and carbon dioxide levels over the period 1981 to 2000. All model simulations were based upon the actual adoption of no-till practices on U.S. and Canadian farms.

"Comparing the model results with and without changes in carbon dioxide and climate allows us to estimate the impact of recent changes in climate and carbon dioxide on soil carbon sequestration," Jain said. "Over the period 1981 to 2000, 868 million tons of carbon were stored in solids under no-till farming. Five percent of this carbon storage comes about because climate change and increasing atmospheric carbon dioxide accelerate carbon storage in soil. Future increases in no-till could sequester enough carbon to satisfy nearly one-fifth of the total U.S. reduction in carbon-dioxide emissions called for by the Kyoto Protocol."

The effects of climate change on carbon storage will vary from place to place because of differences in how soil moisture and soil temperature change as the climate warms, Jain said. In general, in central and western Canada, the eastern United States, and portions of Florida and Texas, carbon sequestration may increase. In other areas, such as Illinois, climate change will reduce the amount of sequestered carbon.

"Climate change will reduce the gains in the carbon storage from no-till in some areas, but there is still a net gain in stored carbon," Jain said. "In the future, farmers could receive credit for the carbon sequestered in their fields under a carbon-trading arrangement such as has been proposed for the Kyoto Protocol."

Co-authors of the paper were Oak Ridge scientists Tristram West and Wilfred Post, and Illinois graduate student Xiaojuan Yang.

James E. Kloeppel, | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Earth Sciences:

nachricht Arctic sea ice decline driving ocean phytoplankton farther north
16.10.2018 | American Geophysical Union

nachricht Smaller, more frequent eruptions affect volcanic flare-ups
12.10.2018 | Michigan Technological University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

 
Latest News

Unravelling the genetics of fungal fratricide

16.10.2018 | Life Sciences

Blue phosphorus -- mapped and measured for the first time

16.10.2018 | Physics and Astronomy

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>