Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beneficial effects of no-till farming depend upon future climate change

14.10.2005


By storing carbon in their fields through no-till farming practice, farmers can help countries meet targeted reductions in atmospheric carbon dioxide and reduce the harmful effects of global warming.



Growing plants take carbon dioxide from the air and store it as carbon in their tissues. Most of this carbon is returned to the atmosphere as carbon dioxide when crops are harvested and consumed. Some carbon, however, can be permanently stored, or sequestered, in the soil as organic matter. Changes in land management can potentially increase the accumulation of organic carbon in soil.

The amount of carbon stored in soils also depends on how the climate changes and how much carbon dioxide is in the atmosphere, say researchers from the University of Illinois at Urbana-Champaign and Oak Ridge National Laboratory in Tennessee.


"Our research focuses on the feasibility of different sequestration schemes for reducing natural emissions of carbon dioxide or enhancing the natural uptake of atmospheric carbon dioxide," said Atul Jain, a U. of I. professor of atmospheric sciences and lead author of a paper published in the Oct. 12 issue of Geophysical Research Letters. "Converting from conventional plow tillage to no-till practice is among the most cost-effective ways to reduce the buildup of carbon dioxide in the atmosphere."

To study the effect of changes in climate and atmospheric carbon dioxide on soil carbon sequestration, the researchers used a new Earth-system model called the Integrated Science Assessment Model. Developed by Jain and his graduate students, the model includes the complex physical and chemical interactions among carbon-dioxide emissions, climate change, carbon-dioxide uptake by plants and oceans, and changes in farming practices.

About 18 percent of cropland in the United States and about 30 percent of cropland in Canada is under no-till, Jain said. By not tilling their fields, farmers can save labor and fuel costs, reduce soil erosion and preserve precious nutrients. No-till also increases the accumulation of soil organic carbon, thereby resulting in sequestration of atmospheric carbon dioxide.

Changes in no-till land management were simulated with and without changes in climate and carbon dioxide levels over the period 1981 to 2000. All model simulations were based upon the actual adoption of no-till practices on U.S. and Canadian farms.

"Comparing the model results with and without changes in carbon dioxide and climate allows us to estimate the impact of recent changes in climate and carbon dioxide on soil carbon sequestration," Jain said. "Over the period 1981 to 2000, 868 million tons of carbon were stored in solids under no-till farming. Five percent of this carbon storage comes about because climate change and increasing atmospheric carbon dioxide accelerate carbon storage in soil. Future increases in no-till could sequester enough carbon to satisfy nearly one-fifth of the total U.S. reduction in carbon-dioxide emissions called for by the Kyoto Protocol."

The effects of climate change on carbon storage will vary from place to place because of differences in how soil moisture and soil temperature change as the climate warms, Jain said. In general, in central and western Canada, the eastern United States, and portions of Florida and Texas, carbon sequestration may increase. In other areas, such as Illinois, climate change will reduce the amount of sequestered carbon.

"Climate change will reduce the gains in the carbon storage from no-till in some areas, but there is still a net gain in stored carbon," Jain said. "In the future, farmers could receive credit for the carbon sequestered in their fields under a carbon-trading arrangement such as has been proposed for the Kyoto Protocol."

Co-authors of the paper were Oak Ridge scientists Tristram West and Wilfred Post, and Illinois graduate student Xiaojuan Yang.

James E. Kloeppel, | EurekAlert!
Further information:
http://www.uiuc.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>