Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tropics play a more active role than was thought in controlling the Earth’s climate

12.10.2005


Researchers from the Universitat Autònoma de Barcelona and Durham University (UK) have discovered that a million years ago, global climate changes occurred due to changes in tropical circulation in the Pacific similar to those caused by El Niño today. Changes in atmospheric circulation caused variations in heat fluxes and moisture transport, triggering a large expansion of the polar ice sheets and a reorganisation of the Earth’s climate. The discovery, published in Geology, shows that local climate changes in the tropics can create more global climate changes, and emphasises the hypothesis that the tropics play a more active role than was thought in controlling the Earth’s climate.



The planet enters and leaves glacial periods approximately every 100,000 years. However, a million years ago these cycles lasted only 40,000 years. Scientists have reconstructed the chain of climatic events that brought about a change in the frequency of glacial periods and that occurred alongside changes in sea temperatures in the Pacific Ocean and alongside significant changes to tropical climates. The researchers have worked mainly with data obtained from the remains of marine organisms that have accumulated over time in the tropical Pacific. These fossil records show that approximately 1.2 million years ago, the difference in sea temperatures between the East and West Pacific began changing gradually over the course of 400,000 years. In the equatorial regions surrounding Central America, the sea cooled; while around Indonesia, sea temperatures barely changed. This caused changes in atmospheric circulation, creating what is now known as the Walker circulation.

According to the researchers, these changes to tropical atmospheric circulation caused a change in heat fluxes and moisture transport to the polar regions. This brought about an increase in snowfall, enabling the ice sheets, particularly in the northern hemisphere, to expand and change in the frequency of glacial periods from 40,000 to 100,000 years. Until now this expansion was thought to have been influenced only by the ice sheets themselves and by the ocean currents and the atmospheric circulation at high altitude in the northern hemisphere, as well as by CO2 levels in the atmosphere. “Our results show that local climatic changes in the tropics can produce global changes,” stated Antoni Rosell of the UAB, one of the authors of the research. “We are seeing that the tropics play a more active role than was thought in controlling the Earth’s climate”.


The two researchers, Antoni Rosell, a researcher of the Catalan Institute for Research and Advanced Studies (ICREA) for the UAB Institute of Environmental Science and Technology, and Erin L. McClymont, of Durham University (UK), currently at the University of Bristol, have published these results in Geology, the most important scientific journal in this field.

The uneven rhythm of the Earth’s cooling process

The Earth has been passing through a cooling period for several million years. The process is not one of gradual, continuous cooling, but rather one of sporadic stops and starts. Professor Rosell’s previous article, published in Nature, looked at one of these transitions. This transition was significant because it resulted in the cooling of large parts of the northern hemisphere, especially North America. The latest article looks at another one of these transitions, this time in the more recent past and on a global scale. This transition is very important in climatology, as it coincides with a change in the frequency of glacial periods, the reasons for which are not fully understood. Although it was a change in the North Pacific that caused the northern hemisphere permafrost 2.7 million years ago, in the more recent case 1 million years ago, the origin of the permafrost was at the tropics.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>