Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better measurements reveal seasonal changes in sulfur

10.10.2005


Researchers from the University of Maryland (UMD) and the National Institute of Standards and Technology (NIST) have developed a new and improved technique for the simultaneous measurement of sulfur isotopic ratios and concentrations of atmospheric sulfate using snow samples from Greenland and Kyrgyzstan.


Aerial view of the Greenland coast. Credit: NASA-JSC-ES&IA



Sulfur plays an important role in the Earth’s climate. Sulfate particles in the atmosphere scatter and absorb sunlight, provide "seeds" for cloud formation, and affect the reflectivity and radiance of clouds, and thus the temperatures at the Earth’s surface. Atmospheric sulfate comes from natural sources, including oceans and volcanoes, but a large fraction comes from the burning of fossil fuels. Researchers can distinguish between various natural and anthropogenic sources in snow by measuring sulfur isotopes--forms of the element with different numbers of neutrons.

To study how these particulates have changed over time, scientists dig holes in snow that provide an archive of atmospheric particles deposited on the Earth’s surface. The standard analysis technique, gas-source isotope ratio mass spectroscopy (GIRMS), requires relatively large samples--up to four kilograms (about 9 pounds) of snow and ice, but the cycling of sulfur in the atmosphere is dynamic and variable, so samples this large blur seasonal changes.


To solve this problem, the UMD/NIST team developed a new analytical tool based on thermal ionization mass spectrometry (TIMS), which requires much smaller samples. The researchers used an advanced calibration technique known as double isotopic spiking to correct measurement drift and obtain isotope ratio measurements comparable to or better than GIRMS. The smaller snow samples required for TIMS make it possible to distinguish seasonal changes in sulfur particulate composition. The technique also can be used for making highly precise and accurate measurements of sulfur in low-sulfur fossil fuels, and similar applications.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>